Классификация дисперсных систем

Существуют различные способы классификации дисперсных систем. В наиболее широком плане дисперсные системы классифицируют по следующим признакам:

1) размеру частиц дисперсной фазы,

2) агрегатному состоянию как частиц дисперсной фазы, так и дисперсионной среды;

3) форме частиц дисперсной фазы,

4) интенсивности межфазового взаимодействия,

5) наличию структурообразования между частицами дисперсной фазы.

1. В зависимости от размера частиц дисперсной фазы дисперсные системы обычно подразделяют на три типа: истинные растворы, коллоидные и грубодисперные системы. Для большей наглядности представим сказанное в виде таблицы 10.1:

Таблица 10.1

Тип системы Размер частиц Название Состояние системы
Молекулярно- и ионно-дисперсные < 10 Å (10-9 м) истинные растворы гомогенные
Высокодисперсные 10 – 1000 Å коллоидные растворы Ультра и микрогетерогенные
Грубодисперсные >1000 Å взвеси гетерогенные

Истинные растворы представляют собой однородные смеси, в которых частицами дисперсной фазы являются отдельные молекулы, атомы или ионы с размером не более 10-9 м (1нм). Такие частицы не имеют фазовой границы или собственной поверхности раздела. Образуемые ими дисперсные системы гомогенны.

В случае высоко- и грубодисперсных систем частицы дисперсной фазы имеют более крупные размеры (10 – 100 нм), чем отдельные атомы, и обладают собственной фазовой поверхностью. Такие системы гетерогенны. При этом высокодисперсные системы обладают качественными отличиями от грубодисперсных систем и рассматриваются в отдельной теме «Коллоидные растворы».

2. В зависимости от агрегатного состояния дисперсионной среды и дисперсной фазы классификацию дисперсных систем также нагляднее представить в виде таблицы (см. табл.10.2):

Агрегатное состояние будем обозначать буквами: Т – твёрдое (кристаллическое), Ж – жидкость, Г – газ. Дисперсионную среду – индексом 1, а дисперсную фазу – индексом 2.

Таблица 10.2

Фазовое состояние системы Условное обозначение и примеры Тип дисперсной системы
Газообраз-ное Г1 – Г2 * Г1 – Ж2 туман,облака Г1 – Т2 дым, пыль Аэрозоли
Жидкое Ж1 – Г2 жидкие пены Ж1 – Ж2 эмульсии Ж1 – Т2 суспензии, взвеси Лиозоли
Твёрдое Т1 – Г2 твердые пены Т1 – Ж2 жемчуг, опал Т1 – Т2 сплавы Солио-золи

В нормальных условиях гомогенны, гетерогенность возможна только при очень низких температурах или высоких давлениях.

3. Форма частиц дисперсной фазы (или топология) может быть разнообразной. Наиболее удобный способ классификации связан с делением на

а) линейные частицы, вытянутые в одном измерении;

б) плоские или пластинчатые, имеющие два измерения; и

в) объёмные, когда частицы имеют все три пространственные измерения примерно в равной степени.

4. В зависимости от интенсивности межфазового взаимодействия выделяют два типа систем:

а) с интенсивным межфазовым взаимодействием (например, когда поверхность твёрдых частиц смачивается жидкой дисперсионной средой - лиофильность), и

б) с его отсутствием (например, когда поверхность твёрдых частиц не смачивается жидкой дисперсионной средой – лиофобность).

5. В зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы (структурообразования) в дисперсных системах различают два случая.

Первый, когда частицы дисперсной фазы распределены в дисперсионной среде без непосредственного контакта друг с другом – свободнодисперсные системы. Высокодисперсные системы с жидкой дисперсионной средой, обладающие текучестью, называют коллоидными растворами или золями. Исторически первыми название «золь» получили ультрамикрогетерогенные системы с частицами размером 1–100 нм, диспергированными в жидкой среде.

Второй, когда частицы дисперсной фазы контактируют друг с другом с образованием тех или иных пространственных структур – связаннодисперсные системы. Состояние коллоидных растворов, утративших текучесть в результате возникновения в них внутренних структур, называют «гель» (от латинского gelate – замерзать) или студнями. Процесс структурообразования называют гелеобразованием (желатинированием, желатинизацией или студнеобразованием).

Свободная поверхностная энергия и устойчивость
дисперсных систем.

Для высокодисперсных систем характерно наличие значительной удельной поверхности дисперсной фазы (Sуд) и интенсивного физико-химического взаимодействия между дисперсной фазой и дисперсионной средой на границе раздела фаз.

Свойства вещества на межфазовой поверхности отличаются от свойств внутри фазы. Внутри фазы молекулы или другие структурные единицы вещества равномерно окружены такими же частицами и их взаимодействие между собой взаимно скомпенсировано во всех направлениях, за счёт этого каждая молекула достигает определённого минимума энергии и находится как бы на дне «потенциальной ямы». На поверхности же фазы окружение частично меняется. Со стороны окружающей среды это взаимодействие не скомпенсировано, так как там присутствуют иные вещества или иного агрегатного состояния. Это приводит к появлению так называемой поверхностной энергии, величину которой можно представить как произведение её удельного значения (σ) на суммарную поверхность раздела (S). Наличие этого избытка поверхностной энергии (σ•S) является характерной особенностью высокодисперсных систем и определяет ряд присущих им свойств, таких как электрические, поверхностные явления и др.

Из термодинамики известно, что все самопроизвольные процессы протекают в направлении уменьшения свободной энергии. Аналогично происходят процессы и на поверхности раздела фаз (самопроизвольно в стремлении к уменьшению запаса свободной поверхностной энергии). Поэтому в таких системах σ•S→min. Вследствие этого высокодисперсные системы принципиально являются термодинамически неустойчивыми. В чём проявляется их неустойчивость? Возможны два случая.

Первый имеет место при σ=сonst, т.е. когда природа веществ на границе раздела фаз не изменяется. В этом случае стремление к уменьшению свободной поверхностной энергии реализуется за счёт уменьшения суммарной поверхности раздела S→min. Это происходит путём слияния, слипания и укрупнения дисперсных частиц с уменьшением степени их дисперсности, что приводит в итоге к разрушению дисперсной системы. Поэтому способность дисперсных систем сохранять присущую им степень дисперсности называется агрегативной устойчивостью. В этой связи агрегативно устойчивы грубодисперсные и молекулярные системы. У первых поверхность раздела фаз очень мала (S→0), а у вторых отсутствует (S=0). Агрегативно неустойчивы высокодисперсные системы, у которых S может быть очень большой и достигать десятков или даже сотен квадратных метров на один грамм дисперсной фазы. Их самопроизвольное разрушение называется коагуляцией.

Второй путь снижения свободной поверхностной энергии дисперсных систем имеет место при сохранении постоянной степени дисперсности S=сonst. В этом случае происходит изменение природы веществ на поверхности раздела фаз за счёт поглощения (сорбции) из окружающей среды тех веществ, сорбция которых сопровождается более ощутимым уменьшением удельной поверхностной энергии σ→min. В силу указанных выше причин эта способность также проявляется наиболее заметно у высокодисперсных систем и носит название поверхностных явлений.

Кроме этого, разрушение дисперсных систем возможно и без изменения степени дисперсности, например, в результате осаждения из дисперсионной среды относительно более тяжёлых частиц. Способность дисперсных систем сохранять одинаковой концентрацию дисперсных частиц по всему объёму называется кинетической устойчивостью. В этом плане наиболее устойчивы истинные растворы, наименее – грубодисперсные системы (взвеси). Высокодисперсные системы занимают промежуточное положение, а при правильном хранении могут существовать длительное время. Известно, что коллоидный раствор частиц золота, приготовленный ещё М.Фарадеем, не потерял устойчивости до нашего времени.

Таким образом, высокодисперсное состояние вещества – это качественно особая форма его существования, с присущими ей специфическими свойствами и отличиями. Закономерности её изучает коллоидная химия. Термин коллоиды был введен в 1861 г. английским химиком Томасом Грэмом, изучавшим поведение белковых растворов, и означает в переводе с греческого клееподобные.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: