Пример решения Задачи 3

Дано: m 1 = 200 кг; m 2 = 80 кг; Mz = 592 t Н×м; w0= – 2 рад/с; АО = 0,8 м;

R = 2,4 м; а = 1,2 м; t = t = 4 c; ОК = s = 0,5 t12 м; t 1 = Т = 2 с.

Определить wt и wТ, считая тело Н однородной круглой пластинкой. Решение. К решению задачи применим теорему об изменении кинетического момента механической системы, выраженную уравнением

,

где Lz кинетический момент системы, состоящей вданном случае из тела Н, и точки К, относительно оси z; – главный момент внешних сил, приложенных к системе, относительно оси z.

На систему за время от t = 0 до t = t действуют силы: вес G1 тела H, вес G2 точки К, пара сил с моментом Мz и реакции подпятника и подшипника (рис. а).

Предположим, что вращение тела Н происходит против вращения часовой стрелки, если смотреть со стороны положительного направления оси z; будем считать это направление положительным при определении знаков кинетических моментов.

Найдем выражение кинетического момента Lz системы, который скла­дывается из кинетического момента тела Jz wи момента количества дви­жения точки К, находящейся в точке О тела Н и имеющей скорость v = w× O1O:

m2v × O1O = m2O1O2.

Таким образом,

L z = Jz w+ m2O1O2= (Jz+ m2 × O1O2) w

Главный момент внешних сил равен вращающему моменту Мz, так как другие силы момента относительно оси z не создают.

Уравнение, выражающее теорему об изменении кинетического момента, примет вид

(1)

где Мz = ct (с = 592 Н×м/с).

Разделим в уравнении (1) переменные и проинтегрируем левую и правую части уравнения:

Тогда

(Jz + m 2 × O 1 O 2)(wt– w0) = ct2/2. (2)

Найдем числовые значения входящих в уравнение (2) величин.

Момент инерции тела Н относительно оси z найдем, используя теорему о зависимости между моментами инерции относительно параллельных осей:

Jz = JzС+m 1 a 2,

где JzC - момент инерции тела H однородной круглой пластинки относительно вертикальной оси, проходящей через центр масс тела параллельно оси z:

JzC=m 1 R 2 / 2.

Тогда

Jz=m 1 R 2 / 2 + m 1 a 2,

т. е.

Jz = 864 кг × м2.

Из чертежа (рис. 4, б) находим

(O 1 O)= (ОС)2 + (О 1 С)2, или (О 1 О)2 = 4 м2,

поэтому

Jz + m 2 × O 1 O 2 = 864+ 80×4= 1184 кг×м2.

Таким образом, из уравнения (2)

1184 [wt – (– 2)] = 592 × 42/2

имеем

wt = 2 рад/с.

После прекращения действия момента Мz тело H вращается по инер­ции с угловой скоростью wt; при этом к системе приложены силы G 1, G 2, реакции подпятника и подшипника (рис. б).

Те же внешние силы действуют на систему и в течение промежутка времени от t 1= 0 до t 1= Т при движении самоходной тележки.

Уравнение, выражающее теорему об изменении кинетического момента системы, имеет для этого периода времени вид

d Lz/ d t = 0,

т. е.

Lz = const.

Определим значения кинетических моментов Lz 0при t 1 = 0 и Lz tпри t 1=T и приравняем эти значения.

Lz 0= (Jz + m 2 × O 1 O 2)wt = 2368 кг × м2/с.

При t 1 > 0 скорость точки К складывается из относительной скорости vr отношению к телу H и переносной скорости ve в движении вместе с телом Н. Поэтому для t 1=T покажем два вектора количества движения точки: и .

Для t 1=T

LzT = J 2wT + m 2wT1К)2 + m 2 vr × O 1 C.

Найдем

(О 1 КТ) 2 = (O 1 С)2 + (СК Т)2,.

где

СКТ = ОКТ – ОС, ОКТ = st 1=T = 0,5 Т 2 = 0,5 × 22 = 2 м,

т.е. СКТ = 2 – 1,6 = 0,4 м, (О 1 КТ)2= 1,22 + 0,42 = 1,6 м2

Относительная скорость

vr, = d s /d t = t 1,

при t 1 = Т = 2 с.

vr = 2 м/с;

Поэтому

LzT = 864wT + 80wT –1,6 – 80 × 2 × 1,2 = 992wT - 192.

Приравнивая Lz 0 и LzT: 2368 = 992wT - 192, находим wT = 2,59


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: