Правило замены переменной

Утверждение, на котором основывается предыдущее правило, но записанное в виде

, где - дифференцируемая функция, множество значений которой является областью определения функции . Естественно, как и ранее, мы предполагаем существование всех указанных интегралов. Из этой формулы следует и смысл замены переменной: функцию стараются подобрать так, чтобы подынтегральное выражение , в полученном после преобразований интеграле, было проще исходного.

Примеры.

.




double arrow
Сейчас читают про: