Системные флаги и поле IOPL управляют операционной средой и не предназначены для использования в прикладных программах.
- Флаг разрешения прерываний IF – обнуление этого флага запрещает отвечать на маскируемые запросы на прерывание.
- Флаг трассировки TF – установка этого флага разрешает пошаговый режим отладки, когда после каждой выполненной инструкции происходит прерывание программы и вызов специального обработчика прерывания.
- Поле IOPL показывает уровень приоритета ввода-вывода исполняемой программы или задачи: чтобы программа или задача могла выполнять инструкции ввода-вывода или менять флаг IF, её текущий уровень приоритета (CPL) должен быть ≤ IOPL.
- Флаг вложенности задач NT – этот флаг устанавливается, когда текущая задача «вложена» в другую, прерванную задачу, и сегмент состояния TSS текущей задачи обеспечивает обратную связь с TSS предыдущей задачи. Флаг NT проверяется инструкцией IRET для определения типа возврата – межзадачного или внутризадачного.
- Флаг возобновления RF используется для маскирования ошибок отладки.
- VM – установка этого флага в защищённом режиме вызывает переключение в режим виртуального 8086.
- Флаг проверки выравнивания AC – установка этого флага вместе с битом AM в регистре CR0 включает контроль выравнивания операндов при обращениях к памяти: обращение к невыравненному операнду вызывает исключительную ситуацию.
- VIF – виртуальная копия флага IF; используется совместно с флагом VIP.
- VIP – устанавливается для указания наличия отложенного прерывания.
- ID – возможность программно изменить этот флаг в регистре флагов указывает на поддержку инструкции CPUID.
Сегментные регистры
Процессор имеет 6 так называемых сегментных регистров: CS, DS, SS, ES, FS и GS. Их существование обусловлено спецификой организации и использования оперативной памяти.
16-битные регистры могли адресовать только 64 Кб оперативной памяти, что явно недостаточно для более или менее приличной программы. Поэтому память программе выделялась в виде нескольких сегментов, которые имели размер 64 Кб. При этом абсолютные адреса были 20-битными, что позволяло адресовать уже 1 Мб оперативной памяти. Возникает вопрос – как имея 16-битные регистры хранить 20-битные адреса? Для решения этой задачи адрес разбивался на базу и смещение. База – это адрес начала сегмента, а смещение – это номер байта внутри сегмента. На адрес начала сегмента накладывалось ограничение – он должен был быть кратен 16. При этом последние 4 бита были равны 0 и не хранились, а подразумевались. Таким образом, получались две 16-битные части адреса. Для получения абсолютного адреса к базе добавлялись четыре нулевых бита, и полученное значение складывалось со смещением.
Сегментные регистры использовались для хранения адреса начала сегмента кода (CS – code segment), сегмента данных (DS – data segment) и сегмента стека (SS – stack segment). Регистры ES, FS и GS были добавлены позже. Существовало несколько моделей памяти, каждая из которых подразумевала выделение программе одного или нескольких сегментов кода и одного или нескольких сегментов данных: tiny, small, medium, compact, large и huge. Для команд языка ассемблера существовали определённые соглашения: адреса перехода сегментировались по регистру CS, обращения к данным сегментировались по регистру DS, а обращения к стеку – по регистру SS. Если программе выделялось несколько сегментов для кода или данных, то приходилось менять значения в регистрах CS и DS для обращения к другому сегменту. Существовали так называемые «ближние» и «дальние» переходы. Если команда, на которую надо совершить переход, находилась в том же сегменте, то для перехода достаточно было изменить только значение регистра IP. Такой переход назывался ближним. Если же команда, на которую надо совершить переход, находилась в другом сегменте, то для перехода необходимо было изменить как значение регистра CS, так и значение регистра IP. Такой переход назывался дальним и осуществлялся дольше.
32-битные регистры позволяют адресовать 4 Гб памяти, что уже достаточно для любой программы. Каждую Win32-программу Windows запускает в отдельном виртуальном пространстве. Это означает, что каждая Win32-программа будет иметь 4-х гигабайтовое адресное пространство, но вовсе не означает, что каждая программа имеет 4 Гб физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. А Windows сделает все необходимое, чтобы память, к которой программа обращается, «существовала». Конечно, программа должна придерживаться правил, установленных Windows, иначе возникает ошибка General Protection Fault.
Под архитектурой Win32 отпала необходимость в разделении адреса на базу и смещение, и необходимость в моделях памяти. На 32-битной архитектуре существует только одна модель памяти – flat (сплошная или плоская). Сегментные регистры остались, но используются по-другому 1. Раньше необходимо было связывать отдельные части программы с тем или иным сегментным регистром и сохранять/восстанавливать регистр DS при переходе к другому сегменту данных или явно сегментировать данные по другому регистру. При 32-битной архитектуре необходимость в этом отпала, и в простейшем случае про сегментные регистры можно забыть.
Использование стека
Каждая программа имеет область памяти, называемую стеком. Стек используется для передачи параметров в процедуры и для хранения локальных данных процедур. Как известно, стек – это область памяти, при работе с которой необходимо соблюдать определённые правила, а именно: данные, которые попали в стек первыми, извлекаются оттуда последними. С другой стороны, если программе выделена некоторая память, то нет никаких физических ограничений на чтение и запись. Как же совмещаются два этих противоречивых принципа?

Пусть у нас есть функция f1, которая вызывает функцию f2, а функция f2, в свою очередь, вызывает функцию f3. При вызове функции f1 ей отводится определённое место в стеке под локальные данные. Это место отводится путём вычитания из регистра ESP значения, равного размеру требуемой памяти. Минимальный размер отводимой памяти равен 4 байтам, т.е. даже если процедуре требуется 1 байт, она должна занять 4 байта.
Функция f1 выполняет некоторые действия, после чего вызывает функцию f2. Функция f2 также отводит себе место в стеке, вычитая некоторое значение из регистра ESP. При этом локальные данные функций f1 и f2 размещаются в разных областях памяти. Далее функция f2 вызывает функцию f3, которая также отводит себе место в стеке. Функция f3 других функций не вызывает и при завершении работы должна освободить место в стеке, прибавив к регистру ESP значение, которые было вычтено при вызове функции. Если функция f3 не восстановит значение регистра ESP, то функция f2, продолжив работу, будет обращаться не к своим данным, т.к. она ищет их, основываясь на значении регистра ESP. Аналогично функция f2 должна при выходе восстановить значение регистра ESP, которое было до её вызова.
Таким образом, на уровне процедур необходимо соблюдать правила работы со стеком – процедура, которая заняла место в стеке последней, должна освобождать его первой. При несоблюдении этого правила, программа будет работать некорректно. Но каждая процедура может обращаться к своей области стека произвольным образом. Если бы мы были вынуждены соблюдать правила работы со стеком внутри каждой процедуры, пришлось бы перекладывать данные из стека в другую область памяти, а это было бы крайне неудобно и чрезвычайно замедлило бы выполнение программы.
Каждая программа имеет область данных, где размещаются глобальные переменные. Почему же локальные данные хранятся именно в стеке? Это делается для уменьшения объёма памяти занимаемого программой. Если программа будет последовательно вызывать несколько процедур, то в каждый момент времени будет отведено место только под данные одной процедуры, т.к. стек занимается и освобождается. Область данных существует всё время работы программы. Если бы локальные данные размещались в области данных, пришлось бы отводить место под локальные данные для всех процедур программы.
Локальные данные автоматически не инициализируются. Если в вышеприведённом примере функция f2 после функции f3 вызовет функцию f4, то функция f4 займёт в стеке место, которое до этого было занято функцией f3, таким образом, функции f4 «в наследство» достанутся данные функции f3. Поэтому каждая процедура обязательно должна заботиться об инициализации своих локальных данных.






