Основные уравнения напряжений и деформаций «идеальных» тел

Для моделирования поведения сложного реологического тела в зависимости от свойств его компонентов в инженерной реологии используются комбинации в различных сочетаниях рассмотренных выше простых идеальных тел, каждое из которых обладает только одним физико-механическим свойством.

Модели простых идеальных тел можно комбинировать, располагая их параллельно, последовательно, смешанно (параллельно и последовательно). В комбинациях число простых элементов может быть разное - два, три, четыре и более, достигая 10-20. Однако практика показывает, что применение в моделях свыше трех, четырех элементов значительно усложняет возможности визуального наблюдения за поведением тел при одновременном изменении такого количества его свойств. Поэтому, чаще всего применяются сложные модели, в которых количество элементов составляет не более трех, четырех.

Для параллельного соединения элементов принимается, что деформация упругого элемента равна деформации вязкого элемента, а суммарное напряжение равно сумме напряжений упругого и вязкого элементов.


 
 

Механическая модель «идеально» упругого тела. Такой моделью представляется упругое тело Гука и изображается в виде пружины (рис. 2.2).

а б

Рис. 2.2. Механическая модель тела Гука

Данная модель характеризуется тем, что при приложении мгновенной нагрузки пружина сжимается, а после снятия возвращается в исходное положение. При этом понимается, что деформации возникают непосредственно после приложения нагрузки и скорость ее распространения практически мгновенна.

Ее поведение описывается законом Гука, основным уравнением которого являются выражения вида:

- при растяжении-сжатии: ;

- при сдвиге: . (2.11)

Зависимость напряжения от деформации ( или ) принято показывать в виде реограммы т.е. в виде графика (рис. 2.2, б).

Механическая модель «идеально» вязкого тела. Такой моделью представляется вязкое тело Ньютона и изображается в виде цилиндра с жидкостью и поршня с отверстиями (демпфера), через отверстия которого может протекать жидкость (рис. 2.3). При перемещении поршня жидкость через отверстия протекает из одной части цилиндра в другую. При этом перемещение поршня не свободно, а зависит от сопротивления жидкости, т.е. ее вязкости.


 
 

Поведение модели характеризуется тем, что при приложении мгновенной нагрузки она ведет себя, как абсолютно твердое тело, так как жидкость не способна мгновенно перетечь через отверстия поршня. Если к модели приложить нагрузку и выдерживать под ней или нагрузку прикладывать постепенно, то поршень будет перемещаться в цилиндре в результате протекания жидкости через отверстия. При этом скорость его перемещения зависит от вязкости жидкости, которой он наполнен.

а б

Рис. 2.3 Механическая модель тела Ньютона

Ее поведение описывается законом Ньютона. Основным уравнением, описывающим поведение модели является уравнение вида:

- при продольном смещении: ,

- при сдвиге: . (2.12)

Графическая зависимость представлена на рис. 2.3 б.


 
 

Механическая модель «идеально» пластичного тела. Такой моделью представлено пластичное тело Сен-Венана и изображается в виде пары трения скольжения (рис. 2.4).

а б

Рис. 2.4 Механическая модель тела Сен-Венана

Модель характеризуется тем, что при приложении нагрузки менее критической величины, она остается неподвижной, т.е. никаким изменениям не подвергается. И в случае достижения нагрузки некоторой критической величины происходит смещение одного элемента относительно другого, при этом элемент может перемещаться с любой скоростью.

Ее поведение описывается основным уравнением вида:

, (2.13)

где - предел текучести материала, т.е. критическая величина напряжения при котором материал начинает течь необратимо, Па.

Графическая зависимость представлена на рис. 2.4 б.

На практике механические модели «идеальных» тел и их основные уравнения используются для описания поведения, свойств реальных пищевых материалов, жидкостей, которые достаточно близки по свойствам к ним. Однако, в большинстве это невозможно по причине того, что пищевые материалы представляют собой достаточно сложные композиции, которые одновременно могут обладать двумя, тремя и более свойствами.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: