double arrow

Оценка статистической значимости параметров уравнения регрессии.


С помощью МНК можно получить лишь оценки параметров уравнения регрессии. Чтобы проверить, значимы ли параметры (т.е. значимо ли они отличаются от нуля в истинном уравнении регрессии) используют статистические ме­тоды проверки гипотез. В качестве основной гипотезы вы­двигают гипотезу о незначимом отличии от нуля параметра регрессии или коэффициента корреляции. Альтернативной гипотезой, при этом является гипотеза обратная, т.е. о неравенстве нулю параметра или коэффициента корреляции. Для проверки гипотезы используется t-критерий Стьюдента.

Найденное по данным наблюдений значение t-критерия (его еще называют наблюдаемым или фактиче­ским) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (ко­торые обычно приводятся в конце учебников и практикумов по статистике или эконометрике). Табличное значение оп­ределяется в зависимости от уровня значимости и числа степеней свободы, которое в случае линейной парной рег­рессии равно , n-число наблюдений.

Если фактическое значение t-критерия больше таб­личного (по модулю), то считают, что с вероятностью параметр регрессии (ко­эффициент корреляции) значимо отличается от нуля.

Если фактическое значение t-критерия меньше таб­личного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр регрессии (коэффициент корреля­ции) незначимо отличается от нуля при уровне значимости .

Фактические значения t-критерия определяются по формулам:

,

,

где .

Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции используют критерий:

,

где r - оценка коэффициента корреляции, полученная по наблюдаемым данным.


Сейчас читают про: