Эргономика. Определение. Эргономичные условия работы врача-стоматолога. Работа в «четыре руки»

Методичка

 

5. Анатомо-топографическая характеристика постоянных зубов верхней и нижней челюстей.

Резцы (dentes incisivi). Центральные резцы верхней челюсти (рис. 3.8) из группы резцов самые большие. Вестибулярная и язычная поверхности, сходясь, образуют режущий край, который у недавно прорезавшихся зубов имеет 3 бугорка, быстро стирающихся впоследствии. Вестибулярная поверхность слегка выпуклая, на ней расположены две неярко выраженные бороздки, идущие приблизительно от центральной части коронки по направлению к режущему краю и заканчивающиеся между его буфами. Язычная поверхность имеет треугольную форму, вогнута. По краям коронки находятся нерезко выраженные валики. Сходясь у шейки зуба, они образуют бугорок, величина которого варьирует; при большом бугорке в месте схождения валиков образуется ямка. Срединная и боковая стенки выпуклые, имеют треугольную форму с верхушкой у режущего края и основанием у шейки зуба. Корень конусовидной формы, передняя поверхность несколько шире задней и на поперечном разрезе приближается к форме треугольника. На срединной и боковой поверхностях корня имеются продольные бороздки. Хорошо выражены признаки кривизны и угла; признак корня не выражен, но в целом корень отклонен в заднебоковом направлении, в 100 % случаев имеется один канал.

 

Боковые резцы верхней челюсти (рис. 3.9) по размеру меньше центральных. Вестибулярная поверхность выпуклая, срединная поверхность при переходе в режущий край образует притупленный угол. Латеральный угол в значительной мере закруглен. Язычная поверхность вогнута и имеет форму треугольника, который образует хорошо выраженные боковые валики. Сходясь у шейки зуба, они образуют бугор, а в местах схождения их обычно возникает хорошо выраженная ямка. Корень сдавлен с боков и на разрезе овальной формы, по бокам имеются бороздки. Так же как и в центральном резце, хорошо выражен признак угла и кривизны и в меньшей степени — признак корня, в 100 % случаев имеется один канал.

Центральные резцы нижней челюсти (см, рис. 3.8) значительно меньше резцов верхней челюсти. Коронки их вытянуты в вертикальном направлении, губная поверхность нерезко выпукла, язычная — вогнута в вертикальном направлении. Боковые валики не выражены, поэтому бугорок почти отсутствует. Коронки центральных резцов уже боковых. Боковые поверхности у них почти отвесны, тогда как у боковых резцов латеральная поверхность от режущего края к шейке направлена с наклоном так, что у режущего края коронка шире, чем у шейки. Корень у обоих резцов сдавлен с боков. У центральных резцов слабо выражены все признаки. Принадлежность их к той или иной стороне определяется по бороздке на корне, которая в большей степени проявляется на латеральной поверхности, чем на медиальной. Каналы центральных резцов нижней челюсти узкие. В 70 % случаев имеется один и в 30 % — два канала.

Боковые резцы нижней челюсти (см. рис. 3.9) определяются по признаку угла, кривизны коронки и корня, хотя эти признаки выражены слабо. Полость зуба в резцах верхней и нижней челюстей образована вестибулярной, язычной и двумя боковыми стенками, имеющими треугольную форму. Наиболее широкая часть полости расположена на уровне шейки зуба; постоянно сужаясь, она переходит в канал. В боковых резцах каналы несколько уже, чем в центральных, сжаты с боков. В некоторых случаях каналы могут иметь ряд слепо заканчивающихся ответвлений.

В боковых резцах нижней челюсти в нижней трети канал дельтовидно разветвляется и вновь соединяется в области верхушки корня. В 56 % случаев имеется один и в 44 % — два канала.

Клыки (dentes canini). Клыки верхней челюсти (рис. 3.10) имеют конусовидную форму и являются наиболее развитыми из группы однокорневых зубов. Режущий край клыка образован не прямой линией, как у резцов, а состоит из двух сходящихся под углом отрезков, которые у места схождения образуют хорошо выраженный бугор. Из образующих его линий медиальная всегда короче латеральной. Губная поверхность выпуклая и нерезко выраженным валиком делится на две фасетки — меньшую, медиальную, и большую, латеральную. Язычная поверхность выпуклая и также разделена валиками на две фасетки, которые имеют углубления, а иногда даже ямки. У шейки зуба валик переходит в хорошо выраженный бугорок. Контактные поверхности имеют треугольную форму. Корень хорошо развит, конусообразной формы, слегка сжат с боков, латеральная поверхность его более выпуклая. Обе стороны имеют нерезко выраженные бороздки. Верхушка корня часто изогнута. Хорошо выражены признаки угла и кривизны. В 100 % случаев имеется один канал.

Клыки нижней челюсти (см. рис. 3.10) несколько меньше по сравнению с клыками верхней челюсти; по форме они мало отличаются. Губная поверхность выпуклая, валик плохо выражен, поэтому деление на медиальную и латеральную фасетки нечеткое. Язычная поверхность несколько вогнута, язычный бугор хорошо выражен. Высота коронки вестибулярной и латеральной поверхностей несколько превышает высоту язычной и медиальной поверхностей. Корень имеет хорошо выраженные бороздки на боковых поверхностях.

Полости клыков верхней и нижней челюстей широкие, веретенообразной формы. Коронковая часть полости непосредственно переходит в корневой канал. В клыках нижней челюсти иногда встречаются два канала (в 6 % случаев) — губной и язычный.

Малые коренные зубы, или премоляры (dentes premolares). У первого малого коренного зуба верхней челюсти (рис. 3.11) форма коронки приближается к прямоугольной, язычная поверхность несколько меньше щечной, диаметр коронки больше в щечно-язычном направлении. Щечная поверхность выпуклая, отчетливо выявляется признак кривизны коронки, который у данных зубов нередко может быть обратным, т. е. более выпуклая задняя часть щечной поверхности и более покатая — передняя. Щечная поверхность переходит в боковые поверхности, образуя закругленные углы. Боковая поверхность имеет форму прямоугольника, выпуклая, причем задняя поверхность выпуклая в большей степени. Они плавно, не образуя углов, переходят в выпуклую язычную поверхность. Жевательная поверхность образована двумя буграми, из которых щечный имеет несколько больший размер. Между буграми расположена фиссура, которая с краев ограничена небольшими поперечными бороздками, в результате чего по краям жевательной поверхности образуются валики. Корень сжат в переднезаднем направлении, на боковых поверхностях есть глубокие бороздки. У верхушки корня зуба имеется расщепление на два самостоятельных корня — щечный и язычный. Граница разделения корня различна, чаще — у верхушки корня, но может быть и в средней его части и даже ближе к прищеечной области. Чем выше граница расщепления корня, тем в большей степени конвергируют бугры жевательной поверхности. В зубе хорошо выражены все отличительные признаки, позволяющие определить зубы правой или левой половины челюсти. Во вторых малых коренных зубах верхней челюсти чаще имеется один канал с устьем воронкообразной формы, которое расположено в центре дна полости. Нередко (в 13,5 % случаев) в этих зубах имеются два канала, и тогда устья их расположены соответственно ближе к щечной и язычной стенкам полости зуба. В 85 % случаев имеется два канала, в 6 % — три и в 9 % случаев — один канал.

Второй малый коренной зуб верхней челюсти (рис. 3.12) по форме мало отличается от первого, но несколько меньшего размера. Вестибулярная поверхность выпуклая, имеет нерезко выраженный продольный валик. Контактные поверхности выпуклы, причем задняя поверхность в большей степени, чем передняя. И щечная, и язычная поверхности имеют несколько меньшие размеры, чем у первого малого коренного зуба премоляра.

На жевательной поверхности находятся два бугра одинаковой величины. Корень, как правило, одиночный, имеет конусовидную, слегка уплощенную форму, с небольшими бороздками на боковых поверхностях. В первых малых коренных зубах верхней челюсти дно полости имеет седловидную форму. Каналы — щечный и язычный — узкие, устья их расположены по краям дна полости. В 75 % случаев имеется один канал, в 24 % — два и в 1 % случаев — три канала.

Первый малый коренной зуб нижней челюсти (см. рис. 3.11) меньше по размеру, чем премоляры верхней челюсти. Округлой формы коронка на жевательной поверхности имеет два бугра, из которых щечный больше язычного. Бугры разделяет небольшая бороздка, которая всегда расположена ближе к язычному бугру. Бугры у передней и задней поверхностей соединяются эмалевыми валиками. В других случаях от середины щечного бугра к язычному проходит эмалевый валик, и тогда по бокам его на жевательной поверхности образуются две ямки. Щечная поверхность выпуклая, хорошо выражен признак кривизны, контактные поверхности также выпуклы и постепенно переходят в язычную поверхность. Корень овальной формы, на передней и задней поверхностях имеются нерезко выраженные бороздки. Часто коронка и корень расположены по отношению друг к другу под тупым углом с наклоном в сторону языка. Хорошо выражен признак корня. В 74 % случаев имеется один и в 26 % — два канала.

Второй малый коренной зуб нижней челюсти (см. рис. 3.12) по размерам превышает первый малый коренной зуб этой же челюсти. Жевательная поверхность состоит из двух одинаково хорошо развитых бугров; по краям между ними имеются эмалевые валики. Между буграми лежит глубокая бороздка; часто от нее отходит дополнительная бороздка, которая делит язычный бугор на два, превращая зуб в трехбугорковый. Щечная поверхность не отличается от щечной поверхности первого премоляра, контактные же несколько большего размера, выпуклы и постепенно переходят в язычную поверхность. Благодаря хорошо развитому язычному бугру она также больше по сравнению с язычной поверхностью первого малого коренного зуба. Корень конусовидной формы в сравнении с первым малым коренным зубом более развит. Коронковая часть полости зуба в малых коренных зубах сжата в переднезаднем направлении, имеет форму щели с двумя выступами соответственно буграм коронки. В малых коренных зубах нижней челюсти коронковая полость также сжата в переднезаднем направлении, канал один, имеет воронкообразное устье. Во втором малом коренном зубе в верхушечной части иногда происходит разветвление канала.

Большие коренные зубы, или моляры. Первый большой коренной зуб верхней челюсти (рис. 3.13) на жевательной поверхности имеет 4 бугра, отделенных друг от друга бороздками. Одна из бороздок, начинаясь на передней поверхности, пересекает жевательную и переходит на щечную поверхность, где продолжается до шейки зуба. Этой бороздкой отделяется переднещечный бугор. Вторая бороздка начинается на задней поверхности, переходит на жевательную и язычную поверхности, отделяя заднеязычный бугор. Третья бороздка расположена в середине жевательной поверхности, соединяет две первые и отделяет переднеязычный и заднеязычный бугры. Щечные бугры имеют коническую форму, язычные бугры более закруглены. Передние бугры всегда больше задних. Щечная поверхность выпуклая, разделена бороздкой, имеет хорошо выраженный признак кривизны коронки. Задняя поверхность более выпуклая, чем передняя, но ее размеры больше, чем у задней. Язычная поверхность более выпуклая, чем щечная, но меньше ее, имеет слабовыраженную бороздку, переходящую на нее с жевательной поверхности. На переднеязычном бугре обычно имеется аномальный (добавочный) бугорок, выраженный в большей или меньшей степени, но никогда не достигающий жевательной поверхности. Зуб имеет три хорошо выраженных корня: один — небный, конусовидной формы и два щечных — передний и задний (последний меньше переднего). Оба корня сжаты в переднезаднем направлении. В 57 % случаев имеется три, а в 4 % — четыре канала.

Второй большой коренной зуб верхней челюсти (рис. 3.14) имеет различное строение коронки. Наиболее часто встречаются 4 варианта: 1) коронка зуба по строению приближается к форме коронки первого большого коренного зуба, за исключением добавочного бугорка, который всегда отсутствует; 2) коронка зуба имеет форму ромба. Переднеязычный и заднеязычный бугры сблизились, бороздка между ними лишь слегка заметна; 3) переднеязычный и заднеязычный бугры слились в переднеязычном направлении; 4) коронка треугольной формы имеет 3 бугра — один язычный и два щечных. Первая и четвертая формы коронок встречаются чаще. Зуб имеет 3 корня несколько меньшей величины по сравнению с первым большим коренным зубом. Иногда наблюдается сращение всех корней в один конусовидный, на котором в месте сращивания имеются лишь бороздки. В других, более частых, случаях срастаются только щечные корни. В 70 % случаев имеется три и в 30 % — четыре канала.

Третий большой коренной зуб верхней челюсти (рис. 3.15) имеет различную форму и величину. Коронка иногда может достигать размеров первого моляра или быть значительно меньше его, принимая форму штифтового зуба. Чаще коронка имеет 3 бугра, несколько реже — 4, но может быть также 5–6 бугров. Размеры и форма корней зуба также постоянны, число их может колебаться от 1 до 4–5. Полость моляров верхней челюсти имеет форму прямоугольника или, что встречается чаще во вторых больших коренных зубах, вытянутого треугольника. Свод полости расположен на уровне шейки зуба, рога выдаются в область бугров коронки. Устья каналов расположены в виде треугольника. Каналов обычно три: язычный, более широкий и два щечных узких. Из них заднещечный часто разветвляется на два анастомозирующих между собой канала.

Первый большой коренной зуб нижней челюсти (см. рис. 3.13) является самым большим из группы больших коренных зубов нижней челюсти. На жевательной поверхности его имеются две бороздки — продольная, расположенная только в границах жевательной поверхности, и поперечная, которая начинается на щечной поверхности и, пересекая жевательную поверхность, переходит на язычную. В заднещечном участке жевательной поверхности имеется дополнительная небольшая бороздка, отходящая от поперечной. Такое расположение бороздок образует на жевательной поверхности 5 бугров: 3 щечных и 2 язычных. Очень редко, но все же встречаются шестибугорковые вторые большие коренные зубы. Щечная поверхность выпуклая, с хорошо выраженным признаком кривизны коронки. Контактные поверхности имеют сходство с соответствующими поверхностями первого большого коренного зуба верхней челюсти: задняя поверхность коронки меньшей величины и более выпуклая, чем передняя. Язычная поверхность выпуклая и меньшего размера, чем щечная. Коронка зуба наклонена в сторону полости рта. Зуб имеет два корня — передний и задний; они уплощены и ширина их более выражена в щечно-язычном направлении. На поверхности корней имеются продольные бороздки. Исключение составляет задняя поверхность заднего корня. Корни немного отклонены кзади. В 65 % случаев имеется три, в 29 % — четыре и в 6 % случаев — два канала.

Второй большой коренной зуб нижней челюсти (см. рис. 3.14) несколько меньше первого, но имеет такую же форму. Отличительным признаком является наличие на жевательной поверхности 4 одинаковых по величине бугров, образованных пересечением двух борозд. Очень редко встречается 5 бугров и также редко — слияние корней. Хорошо выражены признаки корня.

Третий большой коренной зуб нижней четности (см. рис. 3.15) может быть разной формы. Однако это явление наблюдается значительно реже, чем у противостоящего ему третьего большого коренного зуба верхней челюсти. Чаще жевательная поверхность состоит из 4 бугров, по нередко встречаются и пятибугорковые третьи большие коренные зубы. Наблюдались даже случаи, когда зуб имел 6–7 бугров. Корней в большинстве случаев два, но часто они сливаются в один конусовидный корень. Изредко встречается несколько недостаточно развитых корней. Полость больших коренных зубов нижней челюсти, так же как и больших коренных зубов верхней челюсти, повторяет форму зуба. Коронковая часть полости имеет трапециевидную форму с большей шириной передней стенки. Свод полости лежит на уровне шейки зуба, 4 рога ее выдаются в бугры и, так же как и бугры коронки, передние рога несколько больше задних. Коронковая полость переходит в корневые каналы, из которых два расположены в переднем корне и один, более широкий, — в заднем. Каналы могут разветвляться; между передними нередко имеются анастомозы. Устья каналов расположены в виде треугольника, верхушка которого обращена к заднему каналу.

 

 

6. Микробная флора полости рта и её роль в развитии патологических процессов.

 

1. Нормальная микрофлора полости рта. Роль в патологии. Полость рта человека представляет собой уникальную экологическую систему для самых разнообразных микроорганизмов, формирующих постоянную (аутохтонную, индигенную) микрофлору, которая играет важную роль в здоровье и болезнях людей. В ротовой полости постоянные микроорганизмы часто ассоциированы с двумя главными заболеваниями — кариесом и болезнями пародонта. По-видимому, эти заболевания возникают после нарушения равновесия среди резидентных видов в данном микробиоценозе под влиянием определенных факторов. Чтобы представить себе процесс, влекущий за собой кариес или болезни пародонта, и вклад микроорганизмов в развитие этих заболеваний, необходимо знать экологию ротовой полости, механизмы формирования нормальной микробной флоры, факторы, регулирующие гомеостаз ротовой экосистемы.

2. Аутохтонные и аллохтонные виды. Постоянная (индигенная) и факультативная флора. Среди микробов полости рта встречаются аутохтонные — специфические для данного биотопа виды, аллохтонные — иммигранты из других биотопов хозяина (носоглотки, иногда кишечника), а также виды — иммигранты из окружающей среды (так называемая заносная микрофлора).

Аутохтонную микрофлору подразделяют на облигатную, которая постоянно обитает в полости рта, и факультативную, в составе которой чаще встречаются условно-патогенные бактерии.

Главное значение имеет аутохтонная микрофлора полости рта, среди которой преобладают облигатные виды; факультативные виды встречаются реже, они наиболее характерны для отдельных заболеваний зубов, пародонта, слизистой оболочки полости рта и губ.

В состав нормальной микрофлоры полости рта входят бактерии, вирусы, грибы и простейшие. Наиболее многочисленными являются бактериальные биоценозы, которые играют основную роль в поддержании постоянства данного биотопа.

Микроорганизмы попадают в полость рта с пищей, водой и из воздуха. Богатство пищевых ресурсов, постоянная влажность, оптимальные значения pH и температуры создают благоприятные условия для адгезии, колонизации различных микробных видов.

3. Факторы, влияющие на формирование микрофлоры ротовой полости. Видовой состав микробной флоры полости рта в норме довольно постоянен. Вместе с тем количество микробов может значительно колебаться. На формирование микрофлоры ротовой полости могут влиять следующие факторы:

1) состояние слизистой ротовой полости, особенности строения (складки слизистой, десневые карманы, слущенный эпителий);

2) температура, рН, окислительно-восстановительный потенциал (ОВП) ротовой полости;

3) секреция слюны и ее состав;

4) состояние зубов;

5) состав пищи;

6) гигиеническое состояние полости рта;

7) нормальные функции слюноотделения, жевания и глотания;

8) естественная резистентность организма.

Каждый из этих факторов в различных биотопах ротовой полости влияет на отбор микроорганизмов и помогает поддерживать равновесие между бактериальными популяциями.

Расстройство слюноотделения, жевания и глотания всегда приводит к нарастанию количества микроорганизмов в ротовой полости. Различные аномалии и дефекты, затрудняющие вымывание микробов током слюны (кариозные поражения, патологические зубодесневые карманы, плохо пригнанные зубные несъемные протезы, различные виды металлических коронок) также провоцируют увеличение количества микроорганизмов.

Микробов в полости рта больше утром натощак и меньше всего сразу после приема пищи. Твердая пища больше влияет на уменьшение количества микробов.

4. Механизмы формирования нормальной флоры. Адгезия и колонизация. Коагрегация. Чтобы поселиться в полости рта, микроорганизмы должны сначала прикрепиться к поверхности слизистой оболочки или к зубам. Адгезия (прилипание) необходима для обеспечения устойчивости к току слюны и последующей колонизации (размножению).

Известно, что в адгезии микроорганизмов на буккальном эпителии играют роль неспецифические (прежде всего гидрофобные) взаимодействия и специфические (лиганд-рецепторные) контакты. При этом адгезивными свойствами обладают главным образом белковые компоненты. В частности, в процессе адгезии со стороны грамотрицательных бактерий могут участвовать пили или фимбрии, в то время как у грамположительных бактерий в качестве адгезинов могут выступать липотейхоевые кислоты. Кроме того, в адгезии задействованы гликозилтрансферазы и гликозилированные белки (лектины). С другой стороны, в процесс адгезии вовлекаются специфические рецепторы эпителиоцитов ротовой полости (специфические взаимодействия имеются и при адгезии к поверхности зубов).

Некоторые бактерии не имеют собственных адгезинов, тогда они закрепляются на поверхности слизистых, используя адгезины других микроорганизмов, т.е. происходит процесс коагрегации между бактериальными видами ротовой полости. Коагрегация может способствовать развитию зубных бляшек.

Нормальная микрофлора организма начинает формироваться при рождении ребенка. В полости рта новорожденного она представлена лактобациллами, негемолитическими стрептококками и непатогенными стафилококками. В течение 6—7 дней эти микроорганизмы сменяются микробами, характерными для взрослого человека.

В полости рта может быть до 100 видов микроорганизмов, по другим данным — до 300 (см. таблицу). Главными ее обитателями у взрослого человека являются бактерии преимущественно анаэробного типа дыхания (3/4 всех микробных видов), остальные виды представлены факультативными анаэробами. В ротовой полости самую большую группу бактерий составляют кокки.

Микробная флора полости рта в норме: S. mutans, S. salivarius, S. mitis, Сапрофитные нейссерии, Лактобактерии, Стафилококки, Дифтероиды, Гемофилы, Сапрофитные микобактерии, Тетракокки, Дрожжеподобные грибы, Микоплазмы, Вейллонеллы, Klebsiella, Escherichia, Aerobacter, Pseudomonas и т.д.

 

+ Боровский,2001. стр. 66

 

7. Слюна и ротовая жидкость. Функции слюны.

Слюна (saliva) — секрет слюнных желез, выделяющийся в полость рта. В полости рта находится биологическая жидкость, называемая ротовой жидкостью, которая, кроме секрета слюнных желез, включает микрофлору и продукты их жизнедеятельности, содержимое пародонтальных карманов, десневую жидкость, десквамированный эпителий, распад мигрирующих в полость рта лейкоцитов, остатки пищевых продуктов и т. д.

 

В сутки у взрослого человека выделяется 1500–2000 мл слюны.

Однако скорость секреции неравномерная и зависит от ряда факторов: возраста (после 55–60 лет слюноотделение замедляется), нервного возбуждения, пищевого раздражителя. Во время сна слюны выделяется в 8 — 10 раз меньше, чем в период бодрствования (от 0,5 до 0,05 мл/мин), а при стимуляции выделяется 2,0–2,5 мл/мин. Скорость слюноотделения влияет на поражение зубов кариесом.

Для стоматологов наибольший интерес представляет ротовая жидкость, так как она является средой, в которой постоянно находятся органы и ткани полости рта.

Ротовая жидкость представляет собой вязкую жидкость с относительной плотностью 1,001 — 1,017.

Буферная емкость слюны. Это способность нейтрализовать кислоты и основания (щелочи), определяется гидрокарбонатной, фосфатной и белковой системами. Установлено, что прием в течение длительного времени углеводистой пищи снижает, а прием высокобелковой — повышает буферную емкость слюны. Высокая буферная емкость слюны является фактором, повышающим резистентность к кариесу.

Концентрация водородных ионов (pH). Изучена довольно подробно, что обусловлено разработкой теории Миллера о возникновении кариеса зубов. Многочисленными исследованиями установлено, что в среднем pH слюны в полости рта в нормальных условиях находится в пределах 6,5–7,5, т. е. является нейтральной. Установлены незначительные колебания pH в течение дня и ночи (снижение в ночное время). Наиболее сильным дестабилизирующим pH фактором слюны является кислотопродуцирующая активность микрофлоры полости рта, которая особенно усиливается после приема углеводистой пищи. «Кислая» реакция ротовой жидкости наблюдается очень редко, хотя локальное снижение pH — явление закономерное и обусловлено жизнедеятельностью микрофлоры зубного налета, кариозных полостей, осадка слюны.

Состав слюны и ротовой жидкости. Слюна состоит из 99,0—99,4 % воды и 1.0–0,6 % растворенных в ней органических минеральных веществ. Из неорганических компонентов в слюне содержатся кальциевые соли, фосфаты, калиевые и натриевые соединения, хлориды, гидрокарбонаты, фториды, роданиты и др. Концентрация кальция и фосфора в слюне имеет значительные индивидуальные колебания (1–2 и 4–6 ммоль/л соответственно) и в основном находятся в связанном состоянии с белками слюны. Ионная активность кальция и фосфора в ротовой жидкости является показателем растворимости гидрокси- и фторапатитов. Установлено, что слюна в физиологических условиях пересыщена по гидроксиапатиту (концентрация ионов 10-117) и фторапатиту (10-121), что позволяет говорить о ней как о минерализующем растворе.

Следует отметить, что перенасыщенное состояние слюны в нормальных условиях не приводит к отложению минеральных компонентов на поверхностях зуба, свободных от бляшки поверхностях. В настоящее время установлено, что присутствующие в ротовой жидкости продин- и тирозин-обогащенные белки ингибируют спонтанную преципитацию из растворов, перенасыщенных кальцием и фосфором.

Заслуживает внимания тот факт, что интенсивность растворимости гидроксиапатита в ротовой жидкости значительно увеличивается при снижении ее pH. pH, при котором ротовая жидкость насыщена эмалевым апатитом, рассматривается как «критический pH» и в соответствии с расчетами, подтвержденными клиническими данными, варьируют от 4,5 до 5,5. Как указывают Larsen и соавт., при pH 4,0–5,0, когда ротовая жидкость не насыщена как гидроксиапатитом, так и фторапатитом, растворение эмали происходит с поверхности по типу эрозии. В тех случаях, когда слюна не насыщена гидроксиапатитом, но пересыщена фторапатитом, процесс идет по типу подповерхностной деминерализации, что характерно для кариеса. Таким образом, уровень pH определяет характер деминерализации эмали.

Содержание кальция в слюне (1,2 ммоль/л) ниже, чем в сыворотке крови, а фосфора (3,2 ммоль/л) содержится в 2 раза больше, чем в сыворотке крови. В ротовой жидкости содержится фтор, количество которого определяется его поступлением в организм.

Органические компоненты ротовой жидкости многочисленны. В ней содержатся белки, как синтезируемые в слюнных железах, так и вне их. В слюнных железах синтезируется часть ферментов: гликопротеиды, амилаза, муцин, а также иммуноглобулины класса А. Часть белков слюны имеют сывороточное происхождение (аминокислоты, мочевина). Видоспецифические антитела и антигены, входящие в состав слюны, соответствуют группе крови. Методом электрофореза выделено до 17 белковых фракций слюны.

Ферменты в смешанной слюне представлены 5 основными группами: карбоангидразами, эстеразами, протеолитическими, ферментами переноса и смешанной группой. В настоящее время в ротовой жидкости насчитывают более 60 ферментов. По происхождению ферменты делятся на 3 группы: секретируемые паренхимой слюнной железы, образующиеся в процессе ферментативной деятельности бактерий, образующиеся в процессе распада лейкоцитов в полости рта.

Из ферментов слюны в первую очередь следует выделить L-амилазу, которая уже в полости рта частично гидролизует углеводы, превращая их в декстраны, мальтозу, маннозу и др.

В слюне содержатся фосфатазы, лизоцим, гиалуронидаза, кининогенин (калликреин) и калликреинподобная пептидаза, РНКаза, ДНКаза и др. Фосфатазы (кислая и щелочная) участвуют в фосфорно-кальциевом обмене, отщепляя фосфат от соединений фосфорной кислоты и тем самым обеспечивая минерализацию костей и зубов.

Гиалуронидаза и калликреин являются ферментами, изменяющими уровень проницаемости тканей, в том числе и эмали зуба.

Наиболее важные ферментативные процессы в ротовой жидкости связаны с ферментацией углеводов и в значительной степени обусловлены количественным и качественным составом микрофлоры и клеточных элементов полости рта: лейкоцитов, лимфоцитов, эпителиальных клеток и др.

Ротовая жидкость как основной источник поступления в эмаль зуба кальция, фосфора и других минеральных элементов влияет на физические и химические свойства эмали зуба, в том числе на резистентность к кариесу. Изменения количества и качества ротовой жидкости имеет важное значение для возникновения и течения кариеса зубов.

Функции слюны

Слюна играет огромную роль в поддержании нормального состояния органов и тканей полости рта. Известно, что при гипосаливации, и особенно ксеростомии (отсутствие слюны) быстро развивается воспаление слизистой оболочки рта, а спустя 3–6 мес наступает множественное поражение зубов кариесом. Отсутствие ротовой жидкости затрудняет пережевывание и глотание пиши. Функции слюны многообразны, но основными из них являются пищеварительная и защитная.

Пищеварительная функция а первую очередь выражается в формировании и проглатывании пищевого комка. Кроме того, пища в полости рта подвергается первичной обработке и благодаря наличию в слюне L-амилазы углеводы частично гидролизуются до декстранов и мальтозы.

Защитная функция осуществляется благодаря многообразию свойств слюны. Увлажнение и покрытие слизистой оболочки слоем слизи (муцина) предохраняет ее от высыхания, образования трещин и воздействия механических раздражителей. Защитная функция осуществляется путем очищения (смывания) поверхности зубов и слизистой оболочки рта от микроорганизмов и продуктов их метаболизма, остатков пищи, детрита. Важное значение при этом имеет бактерицидное свойство слюны, осуществляемое благодаря действию ферментов (лизоцим, липаза, РНК-аза, ДНКаза, опсонины, лейкины и др.).

В осуществлении защитной функции слюны важную роль играет ее свертывающая и фибринолитическая способность. В слюне содержатся тромбопластин, антигепариновая субстанция, протромбин, активаторы и ингибиторы фибринолизина. Эти вещества, обладающие гемокоагулирующей и фибринолитической активностью, играют важную роль в обеспечении местного гомеостаза, улучшении процесса регенерации поврежденной слизистой оболочки. Буферная емкость слюны, нейтрализующая поступающие в полость рта кислоты и щелочи, также служит проявлением защитного механизма. И, наконец, важную защитную роль играют иммуноглобулины, содержащиеся в слюне.

Минерализующее действие слюны. Оно также является одним из механизмов защитной функции слюны. В основе этого действия слюны лежат механизмы, препятствующие выходу из эмали ее компонентов и способствующие поступлению таких компонентов из слюны в эмаль.

Кальций в слюне находится как в ионном, так и связанном состоянии. Считают, что в среднем 15 % кальция связано с белками, около 30 % находится в комплексных связях с фосфатами, цитратами и др. и только около 5 % кальция находится в ионном состоянии.

В настоящее время установлено, что ротовая жидкость при нормальных условиях (pH 6,8–7,0) пересыщена кальцием и фосфором. Заслуживает особого внимания тот факт, что интенсивность растворимости гидроксиапатита эмали в ротовой жидкости значительно увеличивается при снижении pH. Как показал В.К. Леонтьев, если при pH ротовой жидкости 6,8 она пересыщена кальцием, то при pH 6,0 ротовая жидкость становится кальцийдефицитной. Эти данные указывают на то, что даже изначальные колебания pH. сами по себе не способные вызвать деминерализацию, могут активно влиять на поддержание динамического равновесия эмали зуба, т. е. эмаль зуба сохраняет постоянство структуры и состава при непрерывном замещении ионного состава гидрокси- и фторапатита.

Физико-химическое постоянство эмали полностью зависит от состава и химического состояния окружающей ротовой жидкости. Главным фактором стабильности апатитов эмали в слюне являются pH и концентрация кальция, фосфата и фтористых соединений в растворе.

Таким образом, ротовая жидкость является сложной средой и осуществляет ряд важных функций. Это лабильная среда, и на ее количественный и качественный состав влияет ряд факторов и условий, но в первую очередь — состояние организма. С возрастом уменьшается секреторная функция больших и малых слюнных желез. Происходит нарушение слюноотделения при острых и ряде хронических заболеваний. Так, одним из важных диагностических признаков ящура является избыточное выделение слюны (до 7–8 л в сутки). При гепатохолециститах отмечается гипосаливация, и больные жалуются на сухость в полости рта. При сахарном диабете увеличено содержание глюкозы в ротовой жидкости.

Большое влияние на состав и свойства ротовой жидкости оказывает гигиеническое состояние полости рта. Ухудшение ухода за полостью рта приводит к увеличению налета на зубах, повышению активности ряда ферментов (фосфатазы, аспарагиновая трансаминаза), увеличению осадка слюны, быстрому размножению микроорганизмов, что создает условия, особенно при частом приеме углеводов, для продуцирования органических кислот и изменения концентрации pH.

Защитные механизмы слюны против кариеса. В настоящее время установлено, что слюна оказывает выраженное противокариозное действие, что выражается в разведении и выведении сахаров пищевых продуктов, нейтрализации кислот в зубном налете, обеспечении процесса деминерализации эмали зуба.

Было установлено, что после поступления в полость рта твердой углеводистой пищи концентрация глюкозы в слюне снижается, причем вначале быстро, а затем медленно. Большое значение при этом играет скорость слюноотделения — усиление слюноотделения способствует выведению углеводов. Важно, что усиление слюноотделения не приводит к выведению фторидов, так как они связываются с поверхностями твердых и мягких тканей полости рта, высвобождаясь в течение нескольких часов. Считают, что основным механизмом противокариозного действия фторидов является поддержание баланса между де- и реминерализацией в пользу последней. В результате исследований, проведенных в последние годы, установлено, что этот механизм реализуется даже при относительно низких концентрациях фторидов в слюне.

Влияние слюны на ускорение выделения глюкозы является не единственным механизмом снижения поражаемости кариесом. Более выраженное противокариозное действие слюны состоит в нейтрализации и буферном эффекте, что обеспечивается в основном гидрокарбонатом слюны. Установлено, что в стимулированной слюне концентрация гидрокарбонатов значительно выше, чем в нестимулированной. Из этого следует, что усиление слюноотделения обеспечивает снижение pH зубной бляшки.

Слюна пересыщена ионами кальция, фосфора и гидроксила, соединения которых формируют основу тканей зуба. Степень пересыщенности еще более высокая в жидкой фазе зубного налета, которая находится в непосредственном контакте с поверхностью зуба. Пересыщенность слюны ионами, составляющими основу тканей зуба, обеспечивает их поступление в эти ткани, т. е. является движущей силой минерализации. Пересыщенное состояние слюны ионами кальция, фосфора и гидроксиапатитов уменьшается, а затем и исчезает при снижении pH зубного налета.

Ряд белков слюны участвует в реминерализации подповерхностных слоев эмали. Молекулы статхерина и кислых, богатых пролином белков, а также ряд фосфопротеинов, связывающих кальций при снижении pH в зубном налете, освобождают ионы кальция и фосфора в жидкую фазу зубного налета, что поддерживает реминерализацию.

Из других противокариозных механизмов следует указать на образование пленки (пелликулы) на поверхности эмали слюнного происхождения. Эта пленка препятствует проникновению кислот в зуб и выходу кальция и фосфора из зуба (см. раздел 6.5).

 

8. Гистологическое строение, химический состав дентина.

Дентин (dentinum). Дентин, составляющий основную массу зуба, менее обызвествлен, чем эмаль. В нем содержится 70–72 % неорганического и 28–30 % органического вещества и воды. Основу неорганического вещества составляют фосфат кальцин (гидроксиапатит), карбонат кальция и в небольшом количестве фторид кальция. В его составе имеются также многие макро- и микроэлементы.

Органическое вещество дентина состоит из белков, липидов и полисахаридов. Аминокислотный состав белков типичен для коллагенов: большое количество глицина, пролина, оксипролина и отсутствие серосодержащих аминокислот.

Основное вещество дентина пронизано множеством дентинных трубочек (рис. 3.19). количество которых колеблется от 30 000 до 75 000 на 1 мм2 дентина. В дентинных трубочках (канальцах) циркулирует дентинная жидкость, которая доставляет органические и неорганические вещества, участвующие в обновлении дентина.

В дентине происходят выраженные обменные процессы, что обусловлено его составом и структурой. В первую очередь это относится к белку дентина. Известно, что молекула коллагена способна к обновлению аминокислотного состава. Наличие дентинных канальцев и циркулирующей в них дентинной жидкости создает необходимые условия для обмена органических и неорганических веществ. Клиническим подтверждением наличия обменных процессов является изменение структуры и состава дентина при воздействии различных факторов на твердые ткани зуба: хронической механической травмы, химических, возрастных изменений и др. Гистологическими исследованиями установлено, что внутренние отделы околопульпарного дентина (предентина) коронки зуба имеют нервные окончания, которые являются чувствительными, а возможно, и эфферентными.

Большинство авторов считают, что нервные волокна в обызвествленный дентин на всю его толщину не проникают. Электронно-микроскопическими исследованиями также не установлено наличия нервных волокон в обызвествленном дентине, что значительно затрудняет трактовку бесспорного клинического факта — чувствительности дентина (передача боли при препарировании твердых тканей и воздействии на них химических и температурных раздражителей).

Существуют две теории, пытающиеся объяснить эти факты. Avey, Repp (1959) установили, что дентинные отростки одонтобластов на всем протяжении содержат большое количество ацетилхолинэстеразы, которая, как известно, играет важную роль в передаче нервного импульса. На основании этого авторы предположили, что восприятие и передача болевых раздражений как раз и происходят по отросткам одонтобластов. Этим самым авторы наделили их свойством, которое присуще нервным волокнам. Branstrfim (1966) выдвинул теорию гидродинамического механизма возникновения боли при воздействии раздражителей. Автор исходил из того, что дентин представляет собой ткань. пронизанную многочисленными трубочками, заполненными дентинной жидкостью. Любое воздействие на дентин вызывает перемещение этой жидкости в рецепторный аппарат пульпы зуба. Экспериментальными исследованиями установлено, что при высушивании поверхности дентина, а также при перегревании тканей зуба в процессе препарирования происходит перемещение ядра одонтобласта в отросток, что может свидетельствовать о выраженных физико-химических изменениях в нем.

9. Эмаль, гистологическое строение, функции.

Эмаль (enamelum). Эта ткань, покрывающая коронку зуба, является самой твердой в организме (250–800 ед. Виккерса). На жевательной поверхности ее толщина 1,5–1,7 мм, на боковых поверхностях она значительно тоньше и сходит на нет к шейке, к месту соединения с цементом.

Основным структурным образованием эмали являются эмалевые призмы диаметром 4–6 мкм. Длина призмы соответствует толщине слоя эмали и даже превышает ее, так как она имеет извилистое направление. Эмалевые призмы, концентрируясь в пучки, образуют S-образные изгибы. Вследствие этого на шлифах эмали выявляется оптическая неоднородность (темные или светлые полосы): в одном участке призмы срезаны в продольном направлении, в другом — в поперечном (полосы Гунтера — Шрегера). Кроме того, на шлифах эмали, особенно после обработки кислотой, видны линии, идущие в косом направлении и достигающие поверхности эмали, — так называемые линии Ретциуса (рис. 3.16). Их образование связывают с цикличностью минерализации эмали в процессе ее развития. По существующим представлениям, в указанных участках минерализация менее выражена, и в процессе локального воздействия кислоты 8 линиях Ретциуса наступают наиболее ранние и выраженные изменения.

Эмалевая призма имеет поперечную исчерченность, которая отражает суточный ритм осложнений минеральных солей. Сама призма в поперечном сечении в большинстве случаев имеет аркадообразную форму или форму чешуи (рис. 3.17), но она может быть полигональной, округлой или гексагональной формы.

Ранее считали, что вокруг каждой призмы имеется оболочка, содержащая большое количество органического вещества. С помощью более современных методик, в частности электронной микроскопии, установлено, что межпризменное вещество эмали состоит из таких же кристаллов, как и сама призма, но отличается их ориентацией.

Органическое вещество эмали обнаруживается в виде тончайших фибриллярных структур. Существует мнение, что органические волокна определяют ориентацию кристаллов призмы эмали.

У эмали зуба, кроме указанных образований, встречаются ламеллы, пучки и веретена (рис. 3.18). Ламеллы (пластинки) проникают в эмаль на значительную глубину, эмалевые пучки — на меньшую. Эмалевые веретена — отростки одонтобластов, проникающие в эмаль через дентиноэмалевое соединение.

Основной структурной единицей призмы считаются кристаллы апатитоподобного происхождения, которые плотно прилежат друг к другу, но располагаются под углом. Считают, что размер кристаллов с возрастом изменяется, они становятся большими. Структура кристалла обусловлена размером элементарной ячейки. По ее размерам определяется природа кристалла. Это значит, что кристаллы гидроксиапатита и фторапатита имеют свои параметры.

Г. Н. Пахомов, занимающийся исследованием структуры кристаллов, считает, что эмаль зубов состоит из апатитов многих типов, однако основным является гидроксиапатит — Ca10(PO4)6(OH)2. Boves и Murray указывали следующий состав неорганического вещества в эмали (в процентах): гидроксиапатит 75,04; карбонатапатит 12,06, хлорапатит 4,39; фторапатит 0,663; CaCO3 1,33, MgCO3 1,62. В составе химических неорганических соединений кальций составляет 37 %, а фосфор — 17 %.

В состоянии эмали зуба важная роль принадлежит соотношению Са/Р, как элементов, составляющих основу эмали зуба. Это соотношение непостоянно и может изменяться под воздействием ряда факторов. Здоровая эмаль молодых людей имеет более низкий коэффициент Са/Р, чем эмаль зубов взрослых; этот показатель уменьшается при деминерализации эмали. Более того, возможны существенные различия соотношения Са/Р в пределах одного зуба, что послужило основанием для утверждения о неоднородности структуры эмали зуба и, следовательно, о неоднородной подверженности различных участков поражению кариесом.

Для апатитов, каковыми являются кристаллы эмали зуба, молярное соотношение Са/Р составляет 1,67. Однако, как это установлено в настоящее время, соотношение этих компонентов может изменяться как в сторону уменьшения (1,33), так и в сторону увеличения (2,0). При соотношении Са/Р, равном 1,67, разрушение кристаллов происходит при выходе двух ионов Са2+, при соотношении 2,0 гидроксиапатит способен противостоять разрушению до замещения 4 ионов Са2+, тогда как при соотношении Са/Р, равном 1,33, его структура разрушается. По существующим представлениям, коэффициент Са/Р можно использовать для оценки состояния эмали зуба.

В результате многочисленных исследований, проведенных как в нашей стране, так и за рубежом, установлено, что микроэлементы в эмали располагаются неравномерно. Отмечена большая концентрация в наружном слое фтора, свинца, цинка, железа при меньшем содержании в этом слое натрия, магния, карбонатов. Равномерно по слоям распределяются стронций, медь, алюминий, калий.

Каждый кристалл эмали имеет гидратный слой связанных ионов (ОН), образующийся на поверхности раздела кристалл — раствор. Считают, что благодаря гидратному слою осуществляется ионный обмен, который может протекать в виде гетероионного обмена, когда ион кристалла замещается другим ионом среды, и в виде изотопного обмена, при котором ион кристалла замещается таким же ионом.

В настоящее время установлено, что, кроме связанной воды (гидратная оболочка кристаллов), в эмали имеется свободная вода, располагающаяся в микропространствах. Общий объем воды в эмали составляет 3,8 %.

Первое упоминание о жидкости, находящейся в твердых тканях зуба, относится к 1928 г. В дальнейшем стали дифференцировать зубную жидкость, которая имеется в дентине, от эмалевой жидкости, заполняющей микропространства, объем которых составляет 0,1–0,2 % объема эмали. В исследованиях на удаленных зубах человека с использованием специальной методики подогрева показано, что через 2–3 ч после начала опыта на поверхности эмали образуются капельки «эмалевой жидкости». Движение жидкости обусловлено силами капиллярности, а эмалевая жидкость служит переносчиком молекул и ионов (Bergman). Автор высказал предположение, что эмалевая жидкость играет биологическую роль не только в период развития эмали, но и в сформированном зубе.

Органическое вещество эмали представлено белками, липидами и углеводами. В белках эмали определены следующие фракции: растворимая в кислотах ЭДТУ — 0,17 %, нерастворимая — 0,18 %, пептиды и свободные аминокислоты — 0,15 %. По аминокислотному составу эти белки, общее количество которых составляет 0,5 %, имеют признаки кератинов. Наряду с белком в эмали обнаружены липиды (0,6 %), цитраты (0,1 %), полисахариды (1,65 мг углеводов на 100 г эмали). Таким образом, эмаль имеет следующий состав: неорганические вещества — 95 %, органические — 1,2 %, вода — 3,8 %. В соответствии с данными других авторов содержание органических веществ достигает 3 %.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: