Экзаменационный билет № 18. 1. Адгезия, смачивание и растекание жидкостей как поверхностные явления, общность и различие этих явлений

1. Адгезия, смачивание и растекание жидкостей как поверхностные явления, общность и различие этих явлений. Условия растекания, коэффициент растекания по Гаркинсу. Влияние ПАВ на смачивание и растекание.

Адгезия, смачивание и растекание относятся к межфазным взаимодействиям, которые происходят между конденсированными фазами. Межфазное взаимодействие, или взаимодействие между приведенными в контакт поверхностями конденсированных тел разной природы, называют адгезией (прилипанием).

Смачивание— это поверхностное явление, заключающееся во взаимодействии жидкости с твердым или другим жидким телом при наличии одновременного контакта трех несмешивающихся фаз, одна из которых обычно является газом (воздухом). Степень смачивания количественно характеризуется косинусом краевого угла (угла смачивания), или просто краевым углом (углом смачивания).

Капля жидкости, нанесенная на поверхность, может оставаться на ее определенном участке, и система будет находиться в равновесии в соответствии с законом Юнга, или же растекаться по поверхности. В обоих этих случаях система переходит в состояние с минимальной энергией Гиббса. Если капля не растекается, то, кал было показано выше, краевой угол зависит от соотношения работ адгезии Wа и когезии Wк смачивающей жидкости.

Рассмотрим условия растекания жидкости 2 по поверхности 3. Изменение энергии Гиббса можно записать следующим пбразом:

Для самопроизвольного процесса dG<0 и ds>0:

Если разность заменить выражением из уравнения Дюпре, то получим или

Разницу между левой и правой частями этих неравенств называют коэффициентом растекания f по Гаркинсу: или

При положительном значении коэффициента f жидкость растекается по поверхности, при отрицательном — нe растекается.

Введение ПАВ уменьшает работу когезии (поверхностное натяжение) жидкости а значит, как следует из уравнения Дюпре-Юнга, увеличивает смачивание. Лучше смачивает та жидкость, которая имеет меньшее поверхностное натяжение или работу когезии.

2. Седиментационный анализ. Кривые распределения частиц по размерам, их расчет и назначение, седиментация в центробежном поле.

Принцип седиментационного метода анализа дисперсности состоит в измерении скорости осаждения частиц, обычно в жидкой среде. По скорости осаждения с помощью соответствующих уравнений рассчитывают размеры частиц. Метод позволяет определить распределение частиц по размерам и соответственно подсчитать их удельную поверхность.

При седиментационном анализе дисперсности полидисперсных систем определяют время осаждения частиц отдельных фракций, рассчитывают скорости их осаждения и соответствующие им размеры частиц. Для этого сначала измеряют зависимость массы осевшего осадка от времени, строят график этой зависимости, называемой кривой седиментации, по которому затем определяют все необходимые характеристики дисперсной системы.

Имеются графические и аналитические методы расчета кривой седиментации.

Реальная кривая седиментации полидисперсной системы обычно получается плавной и ей отвечает множество бесконечно малых участков, касательные в каждой точке этой кривой отражают седиментацию данной бесконечно малой фракции.

Результаты седиментациоиного анализа дисперсности полиднсперсных систем представляют также в виде кривых распределения частиц по размерам, характеризующих степень полидисперсности системы.

Кривая распределения является наглядной и удобной характеристикой полидисперсности системы, по которой легко определить содержание различных фракций. Ее строят подобно кривой распределения пор по размерам. Обычно сначала получают интегральную кривую распределения, проводят ее выравнивание с учетом точности получаемых средних значений радиусов частиц фракций и затем по ней строят дифференциальную кривую распределения. Иногда дифференциальную кривую строят сразу. На оси абсцисс откладывают значения радиусов; на ось ординат наносят отношение приращения массовых долей к разности радиусов частиц соседних фракций Δx/Δri. Построив на графике отдельные прямоугольники для каждой фракции (гистограмму) и соединив плавной кривой середины их верхних сторон, получают дифференциальную кривую распределения частиц полидисперсной системы по размерам.

Для осуществления седиментации ультрамикрогетерогенных систем русский ученый А. В. Думанский в 1912 г. предложил использовать центробежное поле. Этот способ удалось реализовать шведскому ученому Сведбергу, который разработал центрифугу с частотой вращения в несколько десятков тысяч оборотов в секунду.

Центробежная сила Fц, как и нормальное ускорение а, пропорциональна кривизне траектории движения частицы (при постоянной линейной скорости u):

Равновесие между Fтр и Fц, которое наступает при седиментации, удобнее записать таким образом (чтобы оставить одну переменную от времени):

Разделяя переменные в полученном соотношении и интегрируя его в пределах от начального расстояния x0 до x и соответственно от τ = 0 до τ, получим:

или

По характеристикам седиментации в центробежном поле при частоте вращения ротора в несколько десятков тысяч оборотов в секунду можно рассчитывать молекулярную массу, например, полимеров. Определив массу m или размер r макромолекулы, мольную массу (численно равную молекулярной массе) рассчитывают по формуле:

3. Рассчитайте толщину диффузной части ДЭС частиц гидрозоля AgI при 25 ºС. Дисперсионная среда золя (ε = 77) содержит Ва(NО3)2 (М = 261) с концентрацией 50 г/м3. Во сколько раз изменится толщина диффузной части, если концентрацию Ba(NO3)2 повысить в 4 раза?



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: