double arrow

Функция обратно пропорциональной зависимости (гипербола)

  График обратно пропорциональной зависимости — кривая (гипербола), состоящая из двух ветвей, симметричных относительно начала координат. k — коэффициент обратной пропорциональности, действительное число (k ≠0). k >0, функция убывающая, ветви гиперболы расположены в I и III координатных четвертях. k <0, функция возрастающая, ветви гиперболы расположены во II и IV координатных четвертях. Область определения есть множество всех чисел, отличных от нуля, т.е. (−∞; 0)∪(+∞;). Гипербола не имеет общих точек с осями координат, а лишь сколь угодно близко приближается к ним, т.к. х ≠0.

 

 

27.

При a > 0, a = 1, определена функция y=ax , отличная от постоянной. Эта функция называется показательной функцией с основанием a.

Основные свойства показательной функции y = a x при a > 1:

  • Область определения функции - вся числовая прямая.
  • Область значений функции - промежуток (0;+ ).
  • Функция строго монотонно возрастает на всей числовой прямой, то есть, если x 1 < x 2, то ax 1 < ax 2.
  • При x = 0 значение функции равно 1.
  • Если x > 0, то a x > 1 и если x < 0, то 0 < a < 1.

 

 

Графики показательных функций с основанием 0 < a < 1 и a > 1 изображены на рисунке.

Основные свойства показательной функции y = a x при 0 < a < 1:

  • Область определения функции - вся числовая прямая.
  • Область значений функции - промежуток (0;+ ).
  • Функция строго монотонно возрастает на всей числовой прямой, то есть, если x 1 < x 2, то ax 1 > ax 2.
  • При x = 0 значение функции равно 1.
  • Если x > 0, то 0 < a < 1 и если x < 0, то a x > 1.

К общим свойствам показательной функции как при 0 < a < 1, так и при a > 1 относятся:

    • ax 1 ax 2 = ax 1+ x 2, для всех x 1и x 2.
    • ax =(ax)−1=1 ax для любого x.
    • nax = axn для любого x и любого n N n =1.
    • (ab) x = ax bx для любых a, b > 0; a,b =1.
    • (ba) x = bxax для любых a, b > 0; a,b =1.
    • ax 1 = ax 2, то x 1= x 2.

 

28.

Функция y = loga х (где а > 0, а = 1) называется логарифмической.

Построение графиков. График логарифмической функции log aх можно построить, воспользовавшись тем, что функция log aх обратна показательной функции y = ax. Поэтому достаточно построить график функции y = ax, а затем отобразить его симметртрично относительно прямой у = х.

Свойства функции у = logaх, a > 1:

  1. D(f) = (0; + );
  2. не является ни четной, ни нечетной;
  3. возрастает на (0; + );
  4. не ограничена сверху, не ограничена снизу;
  5. не имеет ни наибольшего, ни наименьшего значений;
  6. непрерывна;
  7. E(f) = (- ;+ );
  8. выпукла вверх;
  9. дифференцируема.

 

Свойства функции у = l ogaх, 0 < a < 1:

  1. D(f) = (0;+ );
  2. не является ни четной, ни нечетной;
  3. убывает на (0; + );
  4. не ограничена сверху, не ограничена снизу;
  5. нет ни наибольшего, ни наименьшего значений;
  6. непрерывна;
  7. E(f) = (-; + );
  8. выпукла вниз;
  9. дифференцируема.

 

Свойства функции у = ln х:

  1. D(f) = (0; + );
  2. не является ни четной, ни нечетной;
  3. возрастает на {0; + );
  4. не ограничена сверху, не ограничена снизу;
  5. не имеет ни наибольшего, ни наименьшего значений;
  6. непрерывна;
  7. E(f) = (- ;+ );
  8. выпукла вверх;
  9. дифференцируема.

 

 

 

 

29. Степенной функцией с вещественным показателем a называется функция y = x n , x > 0.

Заметим, что для натуральных n степенная функция определена на всей числовой оси.
Для произвольных вещественных n это невозможно, поэтому степенная функция с вещественным показателем определена только для положительных x.

К основным свойствам степенной функции y = x a при a > 0 относятся:

  • Область определения функции - промежуток (0; + ).
  • Область значений функции - промежуток (0; + ).
  • Для любых a график функции проходит через точку (1; 1).
  • Функция строго монотонно возрастает в области определения функции, то есть, если x1 < x2 то ar1 < ar2.
  • График степенной функции при a > 0 изображен на рисунке.

К основным свойствам степенной функции y = x a при a < 0 относятся:

  • Область определения функции - промежуток (0; + ).
  • Область значений функции - промежуток (0; + ).
  • Для любых a график функции проходит через точку (1; 1).
  • Функция строго монотонно возрастает в области определения функции, то есть, если x1 < x2 то ar1 > ar2.
  • График степенной функции при a < 0 изображен на рисунке.

Справедливы следующие свойства степенной функции:

    • xa1xa2 = xa1 + a2
    • xa1: xa2 = xa1 - a2
    • (xa1) a2 = xa1 a2
    • xa1 > xa2, x > 1, a1 > a2
    • xa1 < xa2, 0 < x < 1, a1 < a2

 

30.

Y = cos x

а) Область определения: D (cos x) = R.

б) Множество значений: E (cos x) = [ – 1, 1 ].

в) Четность, нечетность: функция четная.

г ) Периодичность: функция периодическая с основным периодом T = 2 .

д) Нули функции: cos x = 0 при x = + n, n Z.

е) Промежутки знакопостоянства:

;
.

. ж) Промежутки монотонности:

;

.

з) Экстремумы:

; .

График функции y = cos x изображен на рисунке.

 

31.

Y=sin x

а) Область определения: D (sin x) = R.

б) Множество значений: E (sin x) = [ – 1, 1 ].

в) Четность, нечетность: функция нечетная.

г ) Периодичность: функция периодическая с основным периодом T = 2 .

д) Нули функции: sin x = 0 при x = n, n Z.

е) Промежутки знакопостоянства:

; .

ж) Промежутки монотонности:
;

.

з) Экстремумы:
; .

График функции y = sin x изображен на рисунке.

32.

Y=tg x

а) Область определения: D (tg x) = R \ { /2 + n (n Z) }.

б) Множество значений: E (tg x) = R.

в) Четность, нечетность: функция нечетная.

г ) Периодичность: функция периодическая с основным периодом T = .

д) Нули функции: tg x = 0 при x = n, n Z.

е) Промежутки знакопостоянства:

; .

ж) Промежутки монотонности: функция возрастает на каждом интервале, целиком принадлежащем ее области определения.

з) Экстремумы: нет.

График функции y = tg x изображен на рисунке.

 

33.

 

Размещения.

 

Размещениями из элементов по называются соединения, которые можно образовать из элементов, собирая в каждое соединение по элементов, при этом соединения могут отличаться друг от друга как самими элементами, так и порядком их расположения.

 

Например, из 3 элементов (a,b,c) по 2 можно образовать следующие размещения:

ab, ac, ba, bc, ca, cb.

 

Число всех возможных размещений, которые можно образовать из элементов по , обозначается символом и вычисляется по формуле:

,

(всего k множителей).

 

Пример:

 

Перестановки.

Перестановками из n элементов называются соединения, каждое из которых содержит все n элементов, отличающихся поэтому друг от друга только порядком расположения элементов.

 

Например, из 3 элементов (a,b,c) можно образовать следующие перестановки:

abc, bac, cab, acb, bca, cba.

 

Число всех возможных перестановок, которые можно образовать из n элементов, обозначается символом

 

(Произведение n первых целых чисел обозначается символом “ n!” и читается “ n факториал”)

 

Пример:

 

Сочетания.

Сочетаниями из n элементов по k называются соединения, которые можно образовать из n элементов, собирая в каждое соединение k элементов; при этом соединения отличаются друг от друга только самими элементами (различие порядка их расположения во внимание не принимается).

 

Например, из 3 элементов (a,b,c) по 2 можно образовать следующие сочетания:

ab, ac, bc.

 

Число всех возможных сочетаний, которые можно образовать из n элементов по k, обозначается символом :

(В числителе и знаменателе по k множителей).

Пример:

Полезные формулы:

Например:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: