Роберт Гук Антони ван Левенгук

Физико-химическая специфика этого уровня, заключается в том, что в состав живого входит большое количество химических элементов, но основной элементарный состав живого представлен углеродом, кислородом, водородом, азотом. Из групп атомов образуются молекулы, а из последних формируются сложные химические соединения, различающиеся по строению и функциям. Большинство этих соединений в клетках представлено нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров, т.е. соединения последних в определенном порядке. Кроме того, мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами их неспецифических частей (участков).

Молекулы состоят из еще более мелких частиц - атомов. Полимеры ("поли"- "много", "мерос" - "часть") - это молекулы, состоящие из одинаковых или очень похожих друг на друга групп атомов (остатков мономеров: "моно" - "один"), соединенных между собой (см. рис. 13б и 14). Пищеварительные ферменты во вторичной лизосоме "разрезают" полимеры пойманной пищи на отдельные мономеры. Полимеры и их мономеры обычно имеют разные названия. Чтобы было легче запомнить эти названия, мы объединили в табл.1 сведения обо всех типах полимеров клетки.

Обычно на одном конце любого клеточного полимера к нему присоединен атом водорода, а на другом конце - группа из двух соединенных друг с другом атомов - водорода и кислорода. Подобные химические реакции (в ходе которых к каким-либо молекулам присоединяются разделенные на части молекулы воды) называют реакциями гидролиза. Пищеварительные ферменты, производящие реакции гидролиза, называют гидролазами.

Таблица 4. Полимеры и мономеры, входящие в состав живых клеток.

Полимеры Мономеры
Белки Аминокислоты (обычно их в клетке около 20 разных типов).
Углеводы (полисахариды): Моносахариды:
Нуклеиновые кислоты: Нуклеотиды:
рибонуклеиновая кислота (РНК) нуклеотиды РНК (4 типа: А аденин, У урацил, Г гуанин, Ц цитозин)
дезоксирибонуклеиновая кислота (ДНК) нуклеотиды ДНК (4 типа: А, Т тимин, Г, Ц)

 

Все макромолекулы универсальны, т. к. построены по одному плану независимо от их видовой принадлежности.

Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима. Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин и тиамин), вследствие чего любой нуклеотид или любая последовательность нуклеотидов в молекулах ДНК неповторимы по своему составу, равно как неповторима также и вторичная структура молекулы ДНК.

В состав большинства белков входит 100-500 аминокислот, но их последовательности в молекулах белков неповторимы, что делает их уникальными.

Рисунок 2 – Последовательность молекулярной организации клеток  

 

Объединяясь, макромолекулы разных типов образуют надмоле-кулярные структуры, примерами которых являются нуклеопротеиды, представляющие собой комплексы нуклеиновых кислот и белков, липопротеиды (комплексы липидов и белков), рибосомы (комплексы нуклеиновых кислот и белков).

В этих структурах комплексы связаны нековалентно, однако нековалентное связывание весьма специфично. Биологическим макромолекулам присущи не­прерывные превращения, которые обеспечиваются химическими реакциями, катализируемыми ферментами. В этих реакциях ферменты превращают субстрат в продукт реакции в течение исключительно короткого времени, которое может составлять несколько миллисекунд или даже микросекунд. Так, например, время раскручивания двухцепочечной спирали ДНК перед ее репликацией составляет всего лишь несколько микросекунд.

 

3.Биологическая специфика молекулярного уровня

 

Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул. Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Этим свойством не обладают никакие другие биологические молекулы.

Специфичность белков определяется специфической последовательностью аминокислот в их молекулах. Эта последовательность определяет далее специфические биологические свойства белков, т. к. они являются основными структурными элементами клеток, катализаторами и регуляторами различных процессов, протекающих в клетках. (ПРИЛОЖЕНИЕ 2)

Углеводы и липиды являются важнейшими источниками энергии, тогда как стероиды в виде стероидных гормонов имеют значение для регуляции ряда метаболических процессов.

Специфика биологических макромолекул определяется также и тем, что процессы биосинтеза осуществляются в результате одних и тех же этапов метаболизма. Больше того, биосинтезы нукле­иновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов независимо от их видовой принадлежности. Универсальными являются также окисление жирных кислот, гликолиз и другие реакции. Например, гликолиз происходит в каждой живой клетке всех организмов-эукариотов и осуществляется в результате 10 последовательных ферментативных реакций, каждая из которых катализируется специфическим (определенным) ферментом. Все аэробные организмы-эукариоты обладают молекулярными «машинами» в их митохондриях, где осуществляется цикл Кребса и другие реакции, связанные с освобождением энергии. На молекулярном уровне происходят многие мутации. Эти мутации изменяют последова­тельность азотистых оснований в молекулах ДНК.

На молекулярном уровне осуществляется фиксация лучистой энергии и превращение этой энергии в химическую, запасаемую в клетках в углеводах и других химических соединениях, а химической энергии углеводов и других молекул – в биологически доступную энергию, запасаемую в форме макроэнергетических связей АТФ.

Наконец, на этом уровне происходит превращение энергии макроэргических фосфатных связей (АТФ - АДФ) в работу – механическую, электрическую, химическую, осмотическую. Механизмы всех метаболических и энергетических процессов универсальны.

Биологические молекулы обеспечивают также преемственность между молекулярным и следующим за ним уровнем (клеточным), т. к. являются материалом, из которого образуются надмолекулярные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

 

Контрольные вопросы

 

1. Назовите основные органеллы и комплексы клетки?

2. Какие виды макромолекул лежат в основе комплексов и органелл клетки?

3. Что является строительным блоком для каждой макромолекулы?

4. Назовите предшественников макромолекул.

 

 

ТЕМА: клеточный уровень организации живого.

1 История изучения клетки

 

Клетка является структурной единицей живого: она обладает способностью размножаться, видоизменяться и реагировать на раздражения. Цитология изучает строение и химический состав клеток, функции внутриклеточных структур и клеток внутри организма, размножение и развитие клеток, приспособление клеток к условиям окружающей среды.

На протяжении длительного времени человек жил в окружении невидимых существ, использовал продукты их жизнедеятельности (например, при выпечке хлеба из кислого теста, приготовлении сыра и кисломолочных продуктов, вина и уксуса), страдал, когда эти существа являлись причинами болезней или портили запасы пищи, но не подозревал об их присутствии потому, что не видел, а не видел потому, что размеры этих микросуществ лежали много ниже того предела видимости, на который способен человеческий глаз. Известно, что человек с нормальным зрением на оптимальном расстоянии (25 — 30 см) может различить в виде точки предмет размером 0,07—0,08 мм. Меньшие объекты человек заметить не может. Это определяется особенностями строения его органа зрения.

 

Попытки преодолеть созданный природой барьер и расширить возможности человеческого глаза были сделаны давно. Так, при археологических раскопках в Древнем Вавилоне находили двояковыпуклые линзы — самые простые оптические приборы. Линзы были изготовлены из отшлифованного горного хрусталя. Можно считать, что с их изобретением человек сделал первый шаг на пути в микромир.

Дальнейшее совершенствование оптической техники относится к XVI—XVII вв. и связано с развитием астрономии. В это время голландские шлифовальщики стекла сконструировали первые подзорные трубы. Оказалось, что если линзы расположить не так, как в телескопе, то можно получить увеличение очень мелких предметов. Микроскоп подобного типа был создан в 1610 г. Г. Галилеем. Изобретение микроскопа открыло новые возможности для изучения живой природы.

К началу XIX в., после того как появились хорошие микроскопы, были разработаны методы фиксации и окраски клеток, представления о клеточном строении организмов получили общее признание.

Одним из первых микроскоп, состоящий из двух двояковыпуклых линз, дававших увеличение примерно в 30 раз, сконструировал и использовал для изучения строения растений английский физик и изобретатель Роберт Гук (1635—1703). Рассматривая срезы пробки, он обнаружил правильное ячеистое строение древесной ткани. Эти ячейки впоследствии были названы им «клетками» и изображены в книге «Микрография» (1665).

 

Роберт Гук Антони ван Левенгук

 

Именно Р. Гук ввел термин «клетка» для обозначения тех структурных еди­ниц, из которых построен сложный живой организм. Дальнейшее проникновение в тайны микромира неразрывно связано с совер­шенствованием оптических приборов.

Первым человеком, который увидел микроорганизмы был голландец Антони ван Левенгук, мануфактурщик. Заинтересовавшись строением льняного волокна, он отшлифовал для себя несколько грубых линз и, затем так увлекся этой работой, что достиг большого совершенства в деле изготовления линз, названных им «микроскопиями».. По внешнему виду это были одинарные двояковыпуклые стекла, оправленные в серебро или латунь (то, что сейчас называют «лупа»), однако по своим свойствам линзы давали увеличении в 200-270 раз и не знали себе равных. (Достаточно напомнить, что теоретический предел увеличения двояковыпуклой линзы - 250-300 раз).

 

Рисунок - Титульный лист книги «Тайны природы, открытые Антонием ван Левенгуком», 1695г и иллюстрации»

 

Левенгук с интересом рассматривал все –воду из пруда, кровь, зубной налет и т.д. Результаты своих наблюдений он записывал и зарисовывал. Эти письма он отправлял в Лондонское Королевское общество, членом которого он впоследствии был избран.

Антоний ван Левенгук повсюду обнаруживал микроскопических обитателей, которых считал маленькими животными, называл их «анималькулями», и считал, что они также имеют органы пищеварения, ножки, хвостики.

На протяжении последующих 50 лет открытия Левенгука вызывали всеобщее изумление. Будучи в Голландии, Петр I посетил А. ван Левенгука и привез из этой поездки микроскоп.

 

 

2 Основные положения: современной клеточной теории

 

Клеточный уровень организации живого представлен клетками, действующими в качестве самостоятельных организмов (бактерии, простейшие и другие), а также клетками многоклеточных организмов. Главнейшая специфическая черта этого уровня заключается в том, что с него начинается жизнь. Будучи способными к жизни, росту и размножению, клетки являются основной формой организации живой материи, элементарными единицами, из которых построены все живые существа (прокариоты и эукариоты).

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: