Графическое вычисление результирующей амплитуды.Дифракция Френеля на круглом отверстии и на диске

ГРАФИЧЕСКИЙ МЕТОД НАХОЖДЕНИЯ РЕЗУЛЬТИРУЮЩЕЙ АМПЛИТУДЫ В основе метожа лежит понятие

о векторе амплитуды. Если вданною точку приходит амплитуда, выражение нескольких векторов Ai, то Ap(в)=Σ[i=1- k] Ai.

Если в данную точку приходит световое возбуждение от

части волнового фронта, то эту часть разбивают на малые

участки, столь малые, чтобы можно было считать, что фаза

колебаний, создаваемых в точке наблюдения – есть величина

const. Тогда действ. r-го участка выр. A1, 2-го A2.

Применим графический метод к методу зон Френеля:

Разобьем центральную зону на 6 участков.

A1(в) – выраж. действ.в

точке P всей 1-ой зоны

Френеля. Если участки

уменьшаются до малых

размеров, то ломанная

линия заменится дугой,

близкой к полу-окружности.

A2(в) – направленный в противоположную

сторону A1(в), символизирует вывод метода

зон Френеля о противоп. разности фаз колебаний относительно зон Френеля. A∞≈A1/2. По своему характеру все дифракционные явления делятся на 2 класса: 1) дифракционная картина локализуется на конечном растоянии от преград и препятствий. Эти явления носят названия – дифракции Френеля. 2) Отн. явл., в котором дифракционная картина локализуется на бесконечности => дифрагируют плоские волны от удаленных источников, эти дифракционные явления носят название дифракции Фраингофера

ДИФРАКЦИЯ ФРЕНЕЛЯ НА

КРУГЛЫХ ОТВЕРСТИЯХ

а) CD – экран. Экран с круглым отверстием

AB. Исследуем световое воздействие в

точке р, лежащей на линии пересечения

источника S с центром отр. Отверстие

вырезает часть волновой поверхности.

Разобьем открытую часть волновой поверхности на зоны Френеля. В зависимости от размеров отверстий на ней укладывается то или иное количество зон. Если отверстие пропускает 1, 3 или 5 зон, то световое воздействие в точке р больше, чем при полностью открытом волновом фронте. Максимум светового воздействия в точке р при k=1 (см последний рисунок в прошлом абзаце). Если отверстие открывает небольшое четное число зон Френеля (k=2,4,6), то световое воздействие всегда больше, чем при полностью открытом волновом фронте. Min воздействия отвечает отверстию в 2 зоны Френеля.

б) Дифракция Френеля на … Световая волна встречает на своем пути непрозрачный круглый экран AB (на рисунке

ошибка – АВ – там снизу на самом деле).

Исследуем световое воздействие в точке p.

Экран перекрывает часть зон Френеля.

Разобьем открытую часть световой

поверхности на зоны Френеля. Согласно

рассуждениям методом зон Френеля:

A=(An+1)/2 + [(An+1)/2 – (An+2)/2 + (An+3)/2]

+ … + - Ak/2. n – числоперекрытыхзон

Френеля. An+1 – амплитуда от 1-ой открытой

зоны. A=(An+1)/2. Итак, если число зон, перекрытых экраном AB невелико, точка р останется освещенной, причем интенсивность освещенности не отличается практически от интенсивности освещенности, создаваемой полностью открытым световым фронтом. По мере увеличения размеров экрана АВ амплитуда от 1-ой открытой зоны будет убывать, однако точка р остается освещенной до тех пор, пока число перекрытых зон Френеля достаточно мало и лишь при условии, что экран перекрывает большее число зон Френеля, в точке р будет наблюдаться min, т.е. геометрическая тень от экрана АВ


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: