double arrow

Стоечно-балочная конструкция и каркасные системы


Основные (однородные) конструктивные системы

Основные положения

Конструктивная система зданий

Чтобы свободно творчески компоновать различные здания необходимо в совершенстве знать современные инженерные конструкции и умело применять их в соответствии с их возможностями и экономикой.

Конструктивное решение здания в целом определяется на первом этапе проектирования выбором конструктивной системы и конструктивной схемы.

Выбор конструктивной системы влияет на планировочное решение, архитектурную композицию и экономическую целесообразность проекта.

В свою очередь на выбор системы оказывают влияние типологические особенности проектируемого здания, его этажность и инженерно-геологические условия строительства.

Конструктивной системой здания называется совокупность взаимосвязанных конструкций здания, обеспечивающих его прочность, жесткость и устойчивость. Принятая конструктивная система здания должна обеспечивать прочность, жесткость и устойчивость здания на стадии возведения и в период эксплуатации при действии всех расчетных нагрузок и воздействий.

Выбор конструктивной системы здания определяет статическую роль каждой из его конструкций. Материал конструкций и технику их возведения определяют при выборе строительной системы здания.

Конструктивная система может быть однородной (основной) или комбинированной.

В зависимости от внешнего вида несущей конструкции (ее похожесть на стойку, пластину, оболочку и объемный элемент) различают пять классических (основных) конструктивных систем:

- каркасную (вертикальная несущая конструкция колонна),

- стеновую (диафрагмовую, бескаркасную) (вертикальная несущая конструкция стена),

- объемно-блочную (несущая конструкция блок),

- ствольную (объемно-пространственная внутренняя несущая конструкция стволы жесткости (ядро жесткости));

- оболочковую (переферийную) (объемно-пространственная внешняя несущая конструкции на высоту здания в виде тонкостенной оболочки замкнутого профиля, образующей одновременно и наружную ограждающую конструкцию здания).

Внедрение в строительство двух последних видов конструктивных систем (ствольной и оболочковой) началось с 60-х годов прошлого столетия. Их изобретение запатентовано американским инженером Ф. Каном в 1961г.




рис. …. Планы основных конструктивных систем жилых зданий: а - каркасная; б - бескаркасная; в - объемно-блочная (столбчатая); г - ствольная; д - оболочковая.

Самой древней конструктивной системой, действующей в наши дни, является стоечно-балочная система. Она возникла ещё в эпоху неолита.

Стоечно-балочная конструкция состоит из вертикальных и горизонтальных стержневых несущих элементов. Вертикальный элемент – стойка (колонна, столб) – представляет собой прямолинейный стержень, который воспринимает все вертикальные нагрузки от горизонтального элемента (балки); горизонтальные нагрузки, приходящиеся на стойку, и передает усилия от этих воздействий на фундамент. При этом сама стойка работает на сжатие и изгиб. Горизонтальный элемент стоечно-балочной системы – балка (брус) – прямолинейный стержень, работающий на поперечный изгиб под действием вертикальных нагрузок.

Сопряжения вертикальных и горизонтальных элементов могут иметь различную жесткость, что отражается на характере их совместной работы.

- При шарнирном опирании балки обладают свободой горизонтальных перемещений и поворота на опоре, в связи с этим они передают на стойки только вертикальные усилия.

- При жестком сопряжении балки со стойкой обеспечивается совместность их деформаций и перемещений в узле сопряжения и возможность передачи изгибающего момента от балки на стойку. Такой вариант стоечно-балочной системы носит название рамы или рамной конструкции, а жесткий узел сопряжения балки со стойкой – рамного узла.



Стоечно-балочные конструкции выполняют с различным числом пролетов и ярусов (этажей). Система несущих конструкций здания в виде многопролетной и многоэтажной стоечно-балочной конструкции называется каркасной системой.

Каркас представляют собой систему, состоящую из стержневых несущих элементов – вертикальных (колонн) и горизонтальных балок (ригелей), объединенных жесткими горизонтальными дисками перекрытий и системой вертикальных связей.

Системе присуще четкое разделение на несущие и ограждающие конструкции. Несущий остов (колонны, ригели и диски перекрытий) воспринимает все нагрузки, а наружные стены выполняют роль ограждающих конструкций, иногда воспринимая собственный вес (самонесущие стены). Это дает возможность применять материалы прочные и жесткие – для несущих элементов каркаса, и тепло – звукоизоляционные материалы – для ограждающих. Использование высокоэффективных материалов позволяет добиться снижение веса здания, что положительно сказывается на статических свойствах здания.

Каркасная система с пространственным рамным каркасом применяется преимущественно в строительстве многоэтажных сейсмостойких зданий, высотой более девяти этажей, а также в обычных условиях строительства при наличии соответствующей производственной базы.

Каркасная система - основная в строительстве общественных и промышленных зданий. В жилищном строительстве объем ее применения ограничен не только по экономическим соображениям. Основа противопожарных требований при проектировании жилых зданий – последовательное создание вертикальных преград огню – брандмауэров. В сооружении каркасного типа создание брандмауэров велось по встраиванию между колоннами несгораемых вертикальных диафрагм жесткости. Таким образом, заранее ограничивались возможности пространственной планировки, основного преимущества каркасных систем.

Системы перекрытий с древности проектировались из стереотипного подхода к компоновке балочной клетки, т.е. состояли из балок (ригелей) и настила, так конструктивно решаются и деревянные перекрытия. Затем появляются железобетонные ребристые плиты перекрытия, в которых этот подход уже слит в один конструктивный элемент. Появившиеся позднее плоские пустотные плиты перекрытий – являются значительным шагом в проектировании систем зданий нового типа.

В индустриальных жилых зданиях, в сравнении с традиционными сооружениями, имевшими смешанные покрытия, включавшие фрагменты деревянных перекрытий, горизонтальные несущие конструкции впервые начинают выполнять роль «диафрагм жесткости», кроме того, перекрытия воспринимают горизонтальные нагрузки и воздействия (ветровые, сейсмические и др.) и передают усилия от этих воздействий на вертикальные конструкции.

Передача горизонтальных нагрузок и воздействий осуществляется двояко: либо с распределением их на все вертикальные конструкции здания, либо на отдельные специальные вертикальные элементы жесткости (стены, диафрагмы жесткости, решетчатые ветровые связи или стволы жесткости). Индустриальный тип зданий предоставляет и промежуточные решения – передача нагрузки возможна с распределением горизонтальных нагрузок в различных пропорциях между элементами жесткости и конструкциями, работающими на восприятие вертикальных нагрузок.

Каркасы, применяемые в гражданском строительстве, можно классифицировать по следующим признакам:

1. По характеру статической работы:

- рамные – с жестким соединением несущих элементов (колонны, ригели) в узлах в ортогональных направлениях плана здания. Каркас воспринимает все вертикальные и все горизонтальные нагрузки. Каркас, состоящий из поперечных и продольных рам (рамный каркас), обладает пространственной жесткостью: его деформации под влиянием силовых воздействий минимальны и не нарушают эксплуатационных качеств здания. Рамные каркасные системы рекомендуется применять для малоэтажных зданий.

Жесткое соединение – это….

- рамно-связевые – с жестким соединением в узлах колонн и ригелей в одном направлении плана здания (создание рамных конструкций) и вертикальными связями, расставленными в перпендикулярном направлении рамам каркаса. Связями служат стержневые элементы (крестовые, портальные) или стеновые диафрагмы, соединяющие соседние ряды колонн. Вертикальные и горизонтальные нагрузки воспринимаются рамами каркаса и вертикальными пилонами жестких связей. Рамно-связевые каркасные системы рекомендуется применять, если необходимо сократить количество диафрагм жесткости, требуемых для восприятия горизонтальных нагрузок.

- связевые – отличаются простотой конструктивного решения соединений колонн с ригелями, дающее подвижное (шарнирное) закрепление. Каркас (колонны, ригели) воспринимает только вертикальные нагрузки. Горизонтальные усилия передают на связи жесткости – ядра жесткости, вертикальные пилоны, стержневые элементы. Каркас с шарнирными сопряжениями пространственной жесткостью не обладает. Для ее обеспечения вводятся специальные конструкции вертикальных связей. В качестве связей могут быть использованы отдельные стены (диафрагмы жесткости), рамы, раскосы и др. В рамных и связевых каркасах горизонтальными диафрагмами жесткости служат конструкции перекрытий.

Шарнирное соединение – это…..

Рис. 23 Стоечно-балочная конструктивная система

а – стойка; б – балка; в – стоечно-балочная система с шарнирным сопряжением элементов; г – то же, с рамным; д – рамно-связевая схема каркаса с вариантами конструкций вертикальных связей жесткости в виде рам (1), стен (2), раскосов (3); е – рамная схема каркаса; ж – сборные железобетонные элементы стоечно-балочной системы; 4 – двухэтажная колонна; 5 – колонна безбалочного перекрытия; 6 и 7 V и Т – образные колонны; 8 – совмещенный стоечно-балочный элемент; 9 – совмещенная конструкция ригеля и стенки жесткости; 10 – ригель перекрытия; 11 – балка покрытия; 12 – ферма

Рис. …. Каркасные конструктивные системы

а, б — связевые с вертикальными диафрагмами жесткости; в — то же, с распределительным ростверком в плоскости вертикальной диафрагмы жесткости; г — рамная; д — рамно-связевая с вертикальными диафрагмами жесткости; е то же, с жесткими вставками

1 — вертикальная диафрагма жесткости; 2 — каркас с шарнирными узлами; 3 — распределительный ростверк; 4 — рамный каркас; 5 жесткие вставки

2. По материалам:

- железобетонный каркас, выполняемый в сборном, монолитном или сборно-монолитном вариантах. Шаг колонн, как правило принимают 6*6м.

- металлический каркас, часто применяемый при строительстве общественных и многоэтажных зданий, возводимых по индивидуальным проектам.

- деревянный каркас в зданиях не выше 2-х этажей.

Примеры устройства металлического каркаса:

рис…..

Соединение элементов рам между собой – фланцевое, на высокопрочных болтах с предварительной затяжкой

Жесткость каркаса здания в целом обеспечивается системой гибких вертикальных и горизонтальных связей, устанавливаемых с предварительным натяжением, и распорок

В жилищное и офисное строительство технологии строительства из металла массово вошли благодаря разработке металлокаркасных технологий и усилиям американских строителей. Первое здание с металлическим каркасом высотой всего 11 этажей появилось в самом начале ХХ века в Нью-Йорке. Настоящий расцвет строительства из них начался, когда в Америке взметнулись ввысь небоскребы. В России великолепным примером здания с металлическим каркасом является заложенный в 1949году 36-этажного здания МГУ на Воробьевых горах.

Следует отметить, что до ненавнего времени в России строительные металлоконструкции так и оставалась уделом уникальных сооружений. Лед тронулся после перестроечных 90-х годов прошлого столетия, но востребованность таких зданий до недавнего времени была невысокой (для сравнения, доля домов из МК в странах Скандинавии достигает 80% - против 5% в России). Перелом наступил, когда на отечественном рынке появились недорогие и качественные коммерческие сооружения из металла для сельского хозяйства, логистики и спорта. Сегодня востребованность их растет с каждым годом, а появление подобных технологий в жилищном строительстве обещает настоящую революцию в ценах и качестве квартир.

Пример решения металлического каркаса для многоэтажного жилого здания.

Заказать ✍️ написание учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сейчас читают про: