Свойства математического ожидания

1. Математическое ожидание постоянной равно этой постоянной

M[C]=C, т.к. С можно рассматривать как дискретную величину.

2. Постоянный множитель выносится за знак математического ожидания M[Cх]=C M[х]

Доказательство: Для дискретных величин, постоянную выносим за знак суммы, для непрерывных можно выносить за знак интеграла.

3. Математическое ожидание 2-х случайных величин равно сумме их математических ожиданий.

M[x+y]=M[x]+M[y]

4. Математическое ожидание произведения двух независимых случайных величин равно произведению математических ожиданий

M[x×y]=M[x]×M[y]

Можно обобщить на произвольное число сомножителей при условии их независимости.

Пример: Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании двух игральных кубиков.

x – число очков на первом кубике;

y - число очков на втором кубике;

x            
Р 1/6 1/6 1/6 1/6 1/6 1/6

Найти математическое ожидание для x и для y.

M[x]= 1×1/6+2×1/6+3×1/6+4×1/6+5×1/6+6×1/6=1/6+2/6+3/6+4/6+5/6+6/6=21/6= 3=7/2;

M[y] =7/2+7/2=14/2=7.

Итак, мы познакомились с одной из основных числовых характеристик случайной величины- математическим ожиданием, которое характеризует среднее значение случайной величины, около него группируются все возможные значения случайной величины.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: