Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Формы рядов распределения. Расчет показателей центра распределения




Тема 5. Анализ рядов распределения

Контрольные вопросы

1. Что такое абсолютные величины, в каких единицах они выражаются?

2. Каковы формы выражения относительных величин?

3. Каковы общие принципы построения и использования абсолютных и относительных величин в экономическом анализе?

4. Какая существует взаимосвязь между относительными величинами планового задания, выполнения плана и динамики?

5. Кто называется базой (основанием) для исчисления относительной величины?

6. В чем различие между относительными величинами структуры и координации?

7. В каких случаях целесообразно выражать относительные величины в промиллях?

План

1. Формы рядов распределения. Расчет показателей центра распределения.

2. Измерение и оценка вариации.

2.1. Абсолютные показатели вариации.

2.2. Относительные показатели вариации.

3. Методы определения и свойства дисперсии.

4. Оценка меры асимметрии,

Разнообразие статистических совокупностей обуславливает и многообразие рядов распределения, которые характеризуются прежде всего формой соотношения частот и значений варьирующего признака. По своей форме ряды распределения бывают одно-, двух- и многовершинными. Распределения качественно однородных совокупностей преимущественно одновершинные. Среди них выделяют симметричные и асимметричные, остро- и плосковершинные ряды распределения.

Для характеристики центра распределения применяются: средняя арифметическая, мода и медиана. В симметричном распределении .

Порядок определения средней арифметической приведен в теме 4. Рассмотрим особенности расчета моды и медианы дискретных и вариационных рядов.

Модойназывается наиболее часто встречающееся значение признака.

В дискретном ряду мода – это варианта с наибольшей частотой.

В интервальном ряду модой приближенно считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту. В пределах интервала определяется значение признака, которое является модой:

, (5.1)

где -нижняя граница модального интервала;

- величина модального интервала;

- частота модального, предмодального и послемодального интервалов соответственно.

Медиана – варианта, которая делит ранжированный ряд на две равные части.

Медиана в дискретном ряду – варианта, расположенная в середине ряда. Для ранжированного ряда с четным числом членов медианой будет средняя арифметическая из двух смежных вариант.

В интервальном вариационном ряду порядок нахождения медианы следующий: располагаем варианты по ранжиру, определяем накопленные (кумулятивные) частоты, находим медианный интервал. Он соответствует интервалу, кумулятивная частота которого равна или превышает половину суммы частот.




Медиана в интервальном вариационном ряду определяется по формуле:

, (5.2)

где – нижняя граница медианного интервала;

- величина медианного интервала;

- сумма накопленных частот, предшествующих медианному интервалу;

- частота медианного интервала.





Дата добавления: 2014-01-25; просмотров: 1281; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9447 - | 7325 - или читать все...

Читайте также:

 

34.225.194.144 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.