Лабораторная работа №5

Изучение внутренних напряжений в телах

С помощью поляризованного света

Цель и задачи работы: Знакомство с методами получения и исследования поляризованного света, экспериментальная проверка закона Малюса, исследование внутренних напряжений в двутавровой балке методом фотоупругости.

 

Общие сведения

Поляризация света – свойство света, проявляющееся в пространственно–временном упорядочении векторов напряженности электрического  и магнитного  полей электромагнитных волн.

Применение поляризации света весьма разнообразно: исследование строения кристаллов, плавное изменение и регулировка интенсивности световых потоков, светоблокировка, высокочастотная модуляция света в оптических счетных машинах, сахариметрия, метод фотоупругости, применяемый для изучения распределения механической нагрузки в прозрачных моделях деталей машин и в строительстве и др.

Согласно волновой теории свет представляет собой поперечные электромагнитные волны. Реальные источники света содержат множество возбужденных атомов, излучающих по данному направлению волны, плоскости колебаний которых произвольно ориентируются в пространстве. Свет, в котором наблюдаются различные ориентации плоскости колебаний, называется естественным светом (рисунок 1а). А свет, в котором колебания вектора совершаются в одной плоскости, называется линейно - поляризованным светом (рисунок 1в). На рисунке 1б показано расположение векторов напряженности электрического поля  в частично поляризованном свете. Фотохимическое, физиологическое и фотоэлектрическое действие оказывает электрическое поле, поэтому вектор  считается более важным. В дальнейшем мы не будем упоминать о магнитном поле, хотя оно неотделимо от электрического в электромагнитной волне и всегда вектор напряженности магнитного поля перпендикулярен вектору напряженности электрического поля.

 

Рисунок 1 Изображения направлений векторов  в пучке электромагнитных волн в: а – естественном; б - частично поляризованном и в - линейно поляризованном свете

 

Устройства, при помощи которых естественный свет превращается в поляризованный, называются поляризаторами.

В качестве поляризаторов часто используются призмы Николя. Призма Николя вырезается из кристалла исландского шпата. Грани и углы призмы имеют определенные размеры (рисунок 2).

Рисунок 2 Ход лучей в призме Николя: 1 – кристалл исландского шпата, 2 – оптическая ось кристалла, 3 – обыкновенный луч (о), 4 – необыкновенный луч (е), 5 - склеивающий слой

канадского бальзама

 

В призме распространяются две волны по разным направлениям. Обе волны поляризованы, но поляризованы они во взаимно перпендикулярных плоскостях. Один луч – обыкновенный (о), для него выполняется закон преломления света. Показатель преломления исландского шпата n0 для обыкновенного луча постоянен (n = 1,66). Другой луч – необыкновенный (е), он не подчиняется закону преломления, показатель преломления nе зависит от угла падения естественного света на грань призмы. Для показателей преломления nк, n0  и nе выполняется условие:

n0>nк>nе,

где        nк показатель преломления склеивающего слоя (канадского бальзама).

Обыкновенный луч, падая на слой клея, испытывает полное отражение и поглощается затемненной гранью призмы. Необыкновенный луч, преломившись, проходит через призму (рисунок 2).

Причиной двойного лучепреломления является анизотропия поляризуемости молекул, которая ведет к тому, что диэлектрическая проницаемость, а, значит, и показатели преломления среды будут различны для разных направлений электрического вектора световой волны в кристалле.

В учебных лабораториях для получения линейно поляризованного света используются доступные и дешевые приборы – поляроиды, в которых происходит явление оптического дихроизма, т.е. различного поглощения обыкновенного и необыкновенного лучей. Из поляроида выходит свет, поляризованный в одной плоскости, совпадающей с главной плоскостью поляроида.

Закон Малюса

Если на пути распространения поляризованного света, вышедшего из поляроида 1 (поляризатор), расположить поляроид 2 (анализатор), то можно определить степень поляризации света, падающего на анализатор (рисунок 3).

Через анализатор пройдут только колебания с амплитудой:

.                                (1)

 Другая часть -   Е2 = Ео sin α поглотится анализатором.

Интенсивность J световой волны равна энергии, переносимой волной за единицу времени через единицу площади поверхности, перпендикулярной к направлению распространения волны. J  пропорциональна квадрату амплитуды , тогда от выражения (1) можно перейти к закону Малюса:

,                                  (2)

где       J – интенсивность света, вышедшего из анализатора, J0 интенсивность света, падающего на анализатор, a - угол между главными сечениями поляризатора и анализатора.

Рисунок 3 Схема опыта для проверки закона Малюса: 1 -  поляризатор; 2 -  анализатор; 3 - изображение векторов Ео и Е1

в плоскости чертежа

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: