Биологические полимеры

Строение тела животных и человека дает многочисленные примеры использования природой физических и химических свойств разнообразных полимерных материалов.

Мышцы построены из связок волокон, представляющих собой одну из форм белка. Главной функцией мышц является, конечно, перевод химической энергии, полученной из мышц в механическую работу, но поскольку мышцы обладают не которыми эластическими свойствами каучуков, то мышечная система выполняет функции прокладки, амортизирующей удары и защищающей внутренние организмы от повреждений.

Клей и желатину получают из другого фибриллярного белка — коллагена, основного белка кожи.

Прочность кожи, которой добиваются химической обработкой (дубление) шкур, обусловлена сеткой составляющих их коллагеновых волокон.


Синтетические полимеры

Волокна

Среди волокон мы должны различать синтетические, т.е. такие, большие молекулы которых построены или синтезированы из очень простых химических соединений, и такие, которые получены из природных полимеров (обычно целлюлозы) посредствам химической переработки их в другие формы. Оба эти типа полимеров объединяются общим названием химические волокна. Для производства непрерывного нитевидного волокна исходный полимер должен быть жидким — в виде расплава или раствора. Целлюлоза как возможный материал для подобных целей имеет большой недостаток — она не только не плавится, но и не растворяется ни в воде, ни в обычных органических растворителях. Поэтому, чтобы использовать целлюлозу, ее следует подвергать обработке. Один из способов обработки состоит в том, что на целлюлозу действуют уксусной кислотой, в результате чего она превращается в ацетат целлюлозы. Ацетат целлюлозы хорошо растворяется в органических растворителях, например в ацетоне; при этом образуется очень вязкий сиропообразный раствор, который можно продавить через многоканальную фильеру, содержащую необходимое число мельчащих отверстий; в результате получают пучок тонких волоконец, которые после вытяжки и испарения растворителя образуют непрерывную нить ацетата целлюлозы. В процессе другого типа выдавливаемая жидкая масса химически модифицированной целлюлозы подвергается обработке, превращающей ее в исходную целлюлозу. Этот продукт, известный под названием вискозный шелк, является примером регенерированного целлюлозного волокна.

Все волокна из синтетических полимеров производят в форме непрерывных нитей. В отличие от целлюлозных, эти полимеры могут быть легко расплавлены.

Синтетические волокна не следует рассматривать как заменители природных или же как "искусственные" волокна; у них иные свойства и в некоторых отношениях они превосходят природные волокна. Существуют много типов синтетических волокон: нейлоны, полиэфиры (терилен, лавсан) акриловые волокна (орлон) и полипропиленовое волокно (алстрон).

Каучуки

Наиболее важным из синтетических каучуков до второй мировой войны был буна‑каучук: повторяющимся звеном в цепи является бутадиен

Поиски различных каучуконосов велись в Африке, и хотя ряд нужных растений был найден, их потенциальный вклад оказался незначительным. Положение облегчилось с появлением американского синтетического каучука, известного как GR—S.

Он имеет более сложное строение, чем немецкий буна‑каучук, является сополимером, состоящим из двух компонентов — бутадиена и стирола. Этот каучук оказался по ряду свойств хуже натурального, его недостаточная "липкость", или адгезия, создавали трудности, например, при производстве автомобильных шин, однако эта проблема была решена после разработки технологий смешения его с небольшими количествами натурального каучука.

Другим важным синтетическим каучуком является бутил‑каучук‑полимер, получаемый из изобутилена. Однако из особенностей бутил‑каучука в том, что воздух диффундирует через него значительное медленнее, чем сквозь натуральный каучук, поэтому бутил‑каучук ценен, как основа при производстве автомобильных камер. Однако по сравнению с натуральным каучуком эластические свойства его значительно хуже.

В противоположность волокнам каучуки, как правило, не кристалличны; их молекулы расположены неупорядоченно. Структура каучуков, во многом подобная структуре жидкости, называется аморфной. Именно этой рыхлой структуре (в отличие от плотно упакованной регулярной структуры кристалла) каучуки обязаны своей мягкостью и гибкостью.

Кристаллические полимеры

Третий и во многих отношениях наиболее интересный класс синтетических полимеров — это кристаллических полимеров. В отличие от обычных кристаллических твердых тел полимеры не полностью кристалличны, а содержат множество очень мелких кристаллов, существующих наряду с остальным разупорядоченным или аморфным веществом. В неориентированном состоянии они не имеют аналогов в природе, и их свойства отличаются от свойств веществ, которые были известны до сих пор.

Одним из наиболее широко и многосторонне используемых кристаллических полимеров являются полиэтилен. Он обладает превосходными изоляционными свойствами, а также легкостью и эластичностью. Полиэтилен имеет один недостаток —OH плавится при сравнительно низкой температуре (110°С—130°С)

Еще один важный кристаллический полимер — это нейлон, который имеет отличные волокнообразующие свойства, однако он может быть также получен в виде блоков для производства изделий методом литья под давлением. Tпл. (нейлона) – 265°С.

Заменой всех атомов водорода в полиэтилене на атом фтора получают кристаллический полимер с интересными свойствами. Этот полимер, известный под названием политетрафторэтилена (тефлона), имеет еще более высокую температуру плавления, а именно 360°С.

Стекла и смолы

Стекла выделяются среди других полимеров своей высокой оптической прозрачностью и хрупкостью. Их прозрачность — результат того, что они не кристалличны. Как и у каучуков, расположение молекул в стеклах беспорядочно, структура стекол разупорядочена или аморфна. Отдельные кристаллы таких веществ, как кварц или алмаз, могут иметь прозрачность стекла, но, как правило, кристаллические вещества не существуют в форме отдельных единичных кристаллов, а представляют собой агломераты большого числа мелких кристаллов. Подобно тому, как белый цвет снега обусловлен отражением света от многочисленных поверхностей мельчайших кристаллов льда, так и молочно‑белая окраска кристаллических полимеров (полиэтилена), объясняется рассеянием света от межкристаллических поверхностей. В аморфной структуре стекла, как и в жидкости, нет разрывов непрерывности или различий в геометрическом расположении молекул по всему образцу и, следовательно, нет граней, от которых свет мог бы рассеиваться или отражаться. Следовательно, поскольку сами молекулы не поглощают свет, такие материалы прозрачны. Среди хорошо известных стеклообразных полимеров можно назвать полистирол, плексиглас, поливинилхлорид.

Прозрачность не является самым важным свойством стекла, и значительное число полимеров, обладающих механическими свойствами, аналогичными свойствам стекол, не имеют прозрачности плексигласа или полистирола эти вещества называют синтетическими смолами. Из первых смол, получивших промышленное применение, был бакелит, называемый так в честь его открывателя Бакеленда. Бакелит — это темно - окрашенный материал, широко использовался (и используется до сих пор) как электроизолятор.




double arrow
Сейчас читают про: