Б) Современные фрактальные организмы

С течением эволюции полностью фрактальные организмы прекратили свое существование, но фрактальность отдельных структур осталась. В настоящее время фрактальность можно встретить повсеместно.

 

Растения. Жилка листа состоит из ксилемы (древесина) и флоэмы (луб). Ксилема выполняет функцию транспорта воды и минеральных веществ от корня к листьям (для фотосинтеза), а флоэма транспортирует органические вещества (полученные в результате фотосинтеза) от листьев к корню.

У двудольных и однодольных растений жилкование листа разное. У двудольных растений жилкование подразделяется на пальчатое (клен, ревень) и перистое (дуб, осина, липа) Наиболее яркие фрактальные свойства проявляются при перистом типе жилкования. Для фотосинтеза растению нужна вода, а такой тип жилкования обеспечивает каждую клетку листа достаточным количеством воды, что способствует более быстрому протеканию химических процессов, в том числе и фотосинтеза.

           

Фрактальность можно наблюдать и у дихотомического ветвления побегов.

«Ветвление имеет большое значение в жизни растения, увеличивая ассимилирующую поверхность (ассимиляция - совокупность процессов синтеза) и улучшая, таким образом, его питание. Вместе с этим нарастает и общее количество меристемы (образовательной ткани). Так как меристема образуется не сразу, растение всегда имеет "запас" этой ткани, используемые не только на естественное увеличение мощности побеговой системы, но и на восстановительные процессы после какого-либо повреждения».[4]

 

Животные. « Любой орган животного в норме также имеет квазифрактальную (почти фрактальную) структуру, даже если внешне не выглядит фрактализованным. Каждая живая клетка многоклеточного образования должна непрерывно потреблять кислород, питательные вещества, избавляться от углекислого газа и продуктов обмена. Одним словом, она должна достаточно свободно контактировать с внешней средой, чтобы обмениваться с ней веществом и энергией. Для внутренней среды организма функцию внешней среды выполняет кровеносная система, она осуществляет газообмен, обмен питательными веществами, информационными молекулами, управляющими деятельностью клеток, в кровь сбрасываются продукты обмена. Обмен между кровеносной системой и внутренней средой организма осуществляется через двумерную поверхность эндотелия капилляров, то есть через плоскость. Чем больше площадь обмена, то есть площадь эндотелия капилляров, тем обмен интенсивнее, тем большее количество продуктов обмена может быть перенесено через неё за единицу времени. Наиболее эффективно заполнить трёхмерный объём двумерной плоскостью, как упоминалось ранее, можно фрактальной укладкой этой плоскости внутри заданного объёма. Фрактальная укладка позволяет достичь изгибами или ветвлениями фрактальной самоподобной двумерной структуры, заполняющей трёхмерное пространство, каждой клетки, каждого участка внутри заполняемого ею объёма. Кровеносная система опутывает квазифрактальной капиллярной сетью внутренний объём каждого органа организма животного так, что в непосредственной близости от каждой клетки находится капилляр, через который происходит обмен клетки с окружающей средой. Кровеносная система организма и каждого отдельного органа квазифрактальна. Но, если рассматривать кровеносную систему как внешнее, относительно самого органа, пространство, например, если удалить из органа кровеносную систему, то и сам орган, разделённый на сегменты пространством, занимаемым ранее кровеносной системой, будет также представлять собой квазифрактал. Обобщая, можно сказать, что структура всякого достаточно большого многоклеточного органа всегда квазифрактальна, так как только через квазифрактальную организацию можно добиться эффективного обмена каждой клетки органа с окружающей средой».[5]

 

 

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: