Задача 1.
Решите систему уравнений 
Решение №1.
Из первого уравнения находим, что
или
.
Уравнение
не имеет решений.
Подставим
во второе уравнение и получим, что
.
Ответ:
.
Решение №2.

Ответ:
.
Решение №3.
Из второго уравнения
. Подставляем в первое уравнение
,
,
Поэтому
, что невозможно, так как
или
, т.е.
.
Ответ:
.
Комментарий.
К каждому из приведенных решений №№1-3 могут быть предъявлены в той или иной мере существенные претензии. Например, в решениях №1 и №2 нет никакого упоминания о множестве значений синуса, т.е., формально, не обосновано, почему отброшен случай
. В решении №1 много ненужных слов, а решение №3, как это принято называть, «не рационально». В решениях №№2 и 3 в ответ выписаны, формально, уравнения, а не множество решений системы уравнений, да и в решении №1 полагалось бы написать
. В решении №3 запись
, вообще говоря, неясно, что означает, и корректнее следовало бы писать
.
Обсуждения решений этой задачи показали, что многие учителя, кроме того, считают совершенно необходимым введение новой переменной
, явное выписывание дискриминанта и т.д.
Поиски некоего «оптимального», самого правильного, идеального решения – вещь затягивающая и в определенной степени увлекательная. Тут можно заострить методические копья, развернуть дискуссию на страницах печати, обвинить оппонента в полнейшей математической безграмотности и т.п.
Все это, однако, имеет довольно косвенное отношение к работе эксперта при проверке работ выпускников на ЕГЭ. Представим, что Вам при конкретной работе в качестве эксперта встретилось бы одно из решений №№1-3. В каждом из них ясно видна логика и конструкция всего решения, неверных утверждений, ошибок или описок нет, получен верный ответ.
Как же следует оценить эти решения? Можно пойти от противного, и переформулировать вопрос так. Если за такие решения не ставить 2 балла, то за что же их (2 балла) ставить? Только за те тексты, в которых есть явная ссылка на неравенство
, а ответ выписан именно, как множество?? В таком случае, очевидно, что максимальный балл за решение этой задачи получат лишь несколько процентов всех участников экзамена. Напомним, что в силу новой структуры ЕГЭ-2010 по математике, к выполнению задания С1 вполне может приступить около 60-70% всех выпускников, т.е. более полумиллиона учеников. Поэтому излишне жесткие критерии оценивания выполнения этого задания могут в целом по стране дать лишь отрицательный эффект. Другими словами, позиция разработчиков КИМ ЕГЭ-2010 состоит в том, что за решения №№1-3 нельзя ставит 0 баллов, не следует ставить 1 балл, и, тем самым, эти решения заслуживают оценки в 2 балла.
Как уже отмечалось выше, в КИМ ЕГЭ-2010 по математике для всех типов заданий С1 предложено использовать унифицированные критерии оценивания. Выглядят они весьма кратко.
| Критерии оценивания выполнения задания С1 | Баллы |
| Обоснованно получен правильный ответ | 2 |
| Получен ответ, но решение неверно только из-за того, что не учтены ограничения на знак или величину выражения cos x (sin x) | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Отметим, что характер и критерии выставления 1 балла за выполнение задания С1 в 2010 году отличаются от предыдущих лет (2005-2009), когда оценка в 1 балл была очень сильно смещена к оценке в 2 балла. По критериям 2005-2009 гг. оценка в 1 балл выставлялась в тех случаях, когда задача по существу была решена полностью («…приведена верная последовательность всех шагов решения…»), но решение отличалось от «двубалльного» лишь наличием неточностей («…допущена одна описка и/или вычислительная ошибка, не влияющая на дальнейший ход решения…»).
В соответствии с критериями этого года при получении 1 балла вполне возможна ситуация, когда, решая систему уравнений, ученик после равенства
напишет
и включит «такие»
в ответ. В то же время, если ученик при решении квадратного уравнения, скажем, относительно
допускает вычислительную ошибку, «… не влияющую на дальнейший ход решения…», то решение неверно не только «…из-за того, что не учтены ограничения на знак или величину выражения cos x (sin x)..» и по этой причине такое решение оценивается в 0 баллов. Грубо говоря, имеется некоторый приоритет ошибок: ошибки начального, первого рода (арифметические, в вычислениях) наказываются весьма сурово, ошибки в более продвинутом учебном материале (множества значений тригонометрических функций) оцениваются не так жестко.
Для конкретности приведем четыре возможные ситуации в записях учащихся:
А) …
….
Б) …
….
В) …
или
, т.е.
Г) ….
….
В случае А) ошибок нет, и не следует настаивать на явном текстуальном обосновании того, что уравнение
не имеет корней. В случае Б) явно приведено неверное решение квадратного уравнения, и, тем самым, решение неверно не «…только из-за того, что не учтены ограничения на знак или величину выражения cos x (sin x)..». По этой причине такое решение оценивается в 0 баллов, хотя ответ вполне может оказаться и верным. В случае В) есть арифметическая ошибка и опять же решение неверно не «…только из-за того, что не учтены ограничения на знак или величину выражения cos x (sin x)..». Значит, и тут 0 баллов.
Случай Г) – «пограничный», такие случаи практически всегда возникают при небольшой шкале оценок, примененных к большому массиву работ. Если трактовать его как неверное решение квадратного уравнения относительно синуса, то это – 0 баллов. Если его интерпретировать, как уравнение, верно решенное относительно
, («…а корень
отброшен в уме…»), то при отсутствии ошибок в дальнейшем – это 2 балла. По крайней мере, при возможной апелляции работы учеником, у эксперта будет довольно большая головная боль: ведь ошибки в равносильностях из Г) нет.
Никто, кроме конкретного эксперта, оценивающего целиком всю конкретную работу конкретного ученика, не сможет принять тут (только по фрагменту Г)) однозначного решения относительно оценивания.






