Опишите метод клонирования млекопитающих с помошью переноса ядра на примере эксперимента по созданию овцы Долли

Плюрипотентные клетки (до 11 дня после оплодотворения) могут дифференцироваться во все типы клеток, кроме клеток внезародышевых органов (плаценты и желточного мешка).

Плюрипотентность можно выявить, если перенести ядро тестируемой клетки в яйцеклетку с удаленным ядром и затем исследовать способность последней к развитию и образованию жизнеспособного потомства. В нескольких лабораториях с переменным успехом исследовали плюрипотентность линий эмбриональных клеток, клеток плода и взрослой особи. Было показано, что ядра эмбриональных клеток способны хотя и с низкой эффективностью — обеспечивать развитие. Например, с помощью переноса ядер эмбриональных клеток крупного рогатого скота, культивированных непродолжительное время, были получены жизнеспособные особи. Всем известная овца по имени Долли была клонирована с помощью переноса ядра клетки молочной железы (вымени) взрослого животного (рис. 19.8). Так впервые была доказана плюрипотентность ядра дифференцированной взрослой клетки. Впрочем, нельзя исключить, что на самом деле донорское ядро было взято из недифференцированной клетки, присутствовавшей в эпителии молочной железы организма-донора. Клонирование Долли из ядра дифференцированной клетки и трех других овец из ядер эмбриональных клеток удалось осуществить благодаря переносу ядер из клеток, находящихся в стадии покоя (G0), и, возможно, особенностям эмбриогенеза этого животного. Дело в том, что в течение первых трех делений зиготы овцы, занимающих несколько суток, происходит только репликация ДНК, ни один из генов не экспрессируется. Предполагается, что за это время введенная ДНК освобождается от специфичных для клетки регуляторных белков, а соответствующие гены эмбрионального развития связываются с инициаторными эмбриональными белковыми факторами из цитоплазмы яйцеклетки. Основная проблема, которую нужно решить для того, чтобы создание трансгенных животных с помощью метода переноса ядер стало реальным, — это сохранение плюрипотентности клеток в непрерывной культуре. Если это удастся, то генетическое изменение таких клеток и создание трансгенных организмов станет почти рутинной процедурой. Однако вследствие видовых различий во времени процесса деления клетки на ранних стадиях эмбриогенеза и инициации транскрипции в этот период пока не ясно, удастся ли осуществить перенос ядра в случае каких-либо других домашних животных, кроме овец, если донорское ядро будет находится на той же стадии, что и яйцеклетка. (посмотрите на картинку и ВСЕ ПОЙМЕТЕ! Она очень хорошая, но в плохом качестве, надеюсь поймете, если нет – спрашивайте)

 

 

Укажите преимущество переноса генов с помощью искусственных дрожжевых хромосом (YAC); опишите процедуру трансгеноза с помощью YAC для создания мышей, синтезирующих человеческие антитела.

Большинство трансгенов представляют собой кДНК, небольшие гены (<20 т. п. н.) или фрагменты генов. Зачастую кДНК плохо экспрессируются в клетках млекопитающих, а когда трансгеном служит геномная ДНК, важные геноспецифичные регуляторные последовательности, расположенные до и после гена-мишени, обычно не входят в состав вставки. Кроме того, полноразмерные гены и мультигенные комплексы (>100 т. п. н.) слишком велики для встраивания в обычные векторы. Учитывая все это, для трансгеноза стали использовать искусственные дрожжевые хромосомы (YAC), вмещающие фрагменты геномной ДНК длиной от 100 до >1000 т. п. н.

Трансгенных мышей получали микроинъекцией в пронуклеус оплодотворенной яйцеклетки или трансфекцией ES-клеток (эмбриональные стволовые) с помощью YAC, несущих несколько родственных генов или один большой ген. Трансгенные мыши, несущие кластер из пяти функциональных генов Р-глобина человека суммарной длиной примерно 250 т. п. н., экспрессировали все эти гены тканеспецифично и в нужное время — точно также, как это происходит у человека. Такое соответствие обеспечивалось фланкирующими их последовательностями, которые содержат промотор и другие важные регуляторные элементы.

Создание мышей, которые синтезировали бы только человеческие антитела, — это примечательный пример трансгеноза с помощью YAC. Получить человеческие моноклональные антитела практически невозможно. К сожалению, и моноклональные антитела грызунов иммуногенны для человека. Чтобы «очеловечить» существующие моноклональные антитела грызунов, были разработаны сложные стратегии с использованием рекомбинантных ДНК. В результате этих трудоемких процедур удалось получить Fv- и Fab-фрагменты, зачастую обладающие каким-то сродством к специфическому антигену.

Синтез природных антител — это настоящее чудо. Антитело — очень сложная тетрамерная конструкция, состоящая из двух пар разных цепей. Одна из них называется тяжелой (Н), а другая — легкой ('к или к).

Для создания трансгенных мышей, способных синтезировать множество различных человеческих антител, необходимо инактивировать мышиные гены Н- и L-цепей, а затем встроить в хромосомную ДНК мыши YAC, содержащую гены Н- и L-цепей каждого человеческого гена иммуноглобулина. Чтобы решить эту задачу, мышиные гены Н- и к-цепей были заменены («нокаутированы») небольшим участком кластера генов Н-цепи человека (который включал 4 Ун-домена, 16 DH- доменов, 6 1н-доменов, Су и Сц) и кластера генов к-цепи человека (содержащего 4 VK-домена, 5 1к-доменов и Ск). Трансгенные мыши с таким набором генов антител человека синтезировали человеческие антитела к некоторым антигенам; кроме того, были созданы гибридомы, продуцирующие человеческие моноклональные антитела. Однако разнообразие человеческих антител, продуцируемых такими трансгенными мышами, было невелико вследствие ограниченности набора вариабельных сегментов Н- и к-цепей. Чтобы решить эту проблему, создали YAC с большим числом генов вариабельных участков Н- и к-цепей гемоглобина человека. Объединив четыре разные YAC с генами Н-цепей гемоглобина человека, создали YAC длиной 1000 т. п. н., несущую 66 Ун-доменов, около 30 Он-сегментов, 61н-доменов, Сц, Сб, и Су. Аналогично, из трех YAC, несущих различные домены V k, создали YAC длиной 800 т. п. н. с 32 VK -доменами, 5 JK -доменами и Ск. ES-клетки трансфицировали по отдельности YAC с генами Н- и к-цепей методом слияния клеток, отобрали клетки, в которых произошла интеграция YAC, с помощью селективного маркера и проверили целостность каждой вставки методом ПЦР. Инъецировали клетки, несущие встроенные гены Н- либо к-цепи, в бластоцисты и идентифицировали особь-основателя с помощью ПЦР. Трансгенных мышей со вставками генов Н- и к-цепей скрещивали по отдельности с мышами с инактивированными локусами этих цепей. Затем потомство скрещивали между собой, чтобы получить мышей, лишенных функциональных мышиных генов Н- и к-цепей, но несущих обе вставки генов Н- и к-цепей гемоглобина человека. Трансгенные мыши с увеличенным числом человеческих VH- и VK-доменов синтезировали человеческие антитела. Их иммунизировали тремя разными антигенами, и в каждом случае гибридомы секретировали человеческие моноклональные антитела, обладающие высоким сродством к антигену, которым животные были иммунизированы. Весьма вероятно, что с помощью такой трансгенной системы удастся получать человеческие моноклональные антитела для использования их в медицине.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: