Анализ ошибок при работе в автономном режиме

 

В автономном режиме с использованием C/A кода проявляются все рассмотренные в 4.1 ошибки.

В этом режиме единственным способом улучшения точностных характеристик является временное усреднение. Этим простым способом можно устранить случайные составляющие погрешностей (в том числе медленно меняющиеся случайные составляющие погрешностей).

В автономном режиме в режиме C/A, после применения временного усреднения за сравнительно небольшой период измерений, устраняются тропосферные задержки. Ионосферную ошибку этим способом можно устранить лишь частично. То есть постоянную составляющую ионосферной ошибки устранить этим способом нельзя. Зато можно устранить изменяющуюся составляющую ионосферной ошибки, сведя таким образом ионосферную ошибку к ионосферной ошибке которая создается стандартной атмосферой. Однако, на постоянную составляющую можно внести поправку.

В автономном режиме в режиме P в существенной мере устраняется ионосферная ошибка. Поскольку в этом случае измерения производятся на двух частотах. Двухчастотный или дисперсионный способ уменьшения погрешности измерения ПД, вызываемой условиями распространения сигнала ИСЗ в ионосфере. Основой способа является тот факт, что коэффициент преломления ионосферы в некоторой точке является известной функцией частоты сигнала и пропорционален электронной концентрации. Реализуется способ путем одновременного измерения ПД двумя комплектами аппаратуры, работающими на разных частотах. Погрешности измерения в каждом комплекте различны из-за различия частот, но в одинаковой степени зависят от интегральной электронной концентрации вдоль одной и той же трассы распространения. Поскольку частотная зависимость и частоты известны, то погрешности определяются только электронной концентрацией. В результате после измерения двух ПД получается система из двух уравнений с двумя неизвестными: истинная псевдодальность и интегральная электронная концентрация.

В автономном режиме в режиме P, устраняется существенная часть ионосферных задержек.

 

Анализ ошибок при работе в дифференциальном режиме

 

В основе метода дифференциальной навигации, как написано выше в разделе 3, лежит относительное постоянство значительной части погрешности измерения навигационной величины или погрешности расчета координат во времени и в пространстве.

Краткий обзор стабильности характеристик составляющих погрешности дает следующее. Ошибки за счет синхронизации шкал времени на ИСЗ практически постоянны в пространстве. Для погрешности определения координат ИСЗ 20 м изменчивость ошибок псевдодальностей составляет сантиметры при разности расстояний между АП порядка 100 км и дециметры при взаимных удалениях порядка 1000 км. Изменчивость во времени и пространстве стабильных составляющих ионосферных погрешностей, обусловленных запаздыванием сигнала при прохождении в ионосфере, характеризуется корреляционной функцией, которая имеет временные и пространственные радиусы корреляции на уровне соответственно нескольких часов и тысяч километров. Поэтому на интервале в несколько единиц минут и сотен километров ионосферные погрешности в условиях спокойной ионосферы можно полагать достаточно стабильными. Их уровень составляет от 10 до 40 м и достигает минимума при максимальном угле места визируемого ИСЗ, а их изменчивость через 1 мин составляет 0,1–0,2 м (СКО), а через 6 мин — 0,3–1,4 м.

Точность местоопределения после ввода дифференциальных поправок определяется остаточными погрешностями, обусловленными изменчивостью квазисистематических ошибок синхронизации, эфемеридного обеспечения и ошибок за счет ионосферы, а также ошибками, обусловленными шумами и помехами, многолучевостью за счет приема отраженных окружающими объектами сигналов и воздействием тропосферы. Остаточная погрешность местоопределения составляет единицы метров на больших расстояниях разноса и менее одного метра на малых.

В отличие от автономного метода, дифференциальный метод позволяет устранить постоянные составляющие ошибок. Также целый ряд относительно медленно меняющихся случайных составляющих ошибок.

Ошибки часов спутника и эфимеридная ошибка полностью компенсируются дифференциальным режимом, пока приемник пользователя и опорная станция используют данные одних и тех же спутников. Эфемеридные ошибки, если они достаточно велики (30 м и больше) точно так же компенсируются дифференциальным режимом. Для пользователей, находящихся вблизи опорной станции, пути соответствующих сигналов от спутников достаточно близки, так что компенсация является почти полной. Когда удаление пользователь - опорная станция возрастает и различные пути прохождения сигналов от спутников через ионосферу и тропосферу будут отличаться достаточно сильно, атмосферные неоднородности могут вызывать до некоторой степени различные задержки. Так как их протяженность различна, они вызывают ошибку в дифференциальных измерениях GPS, называемую пространственной декорреляцией. Эта ошибка становится больше при увеличении расстояния пользователь-станция, т.е. при нескольких сотнях километров.

Таким образом, в дифференциальном режиме остаются шумовые погрешности, погрешности из-за внешних источников шума, погрешности из-за переотражений, частично ионосферная ошибка и тропосферная ошибка. Эти погрешности, за исключением ионосферной составляющей, будут примерно равными как для P кода, так и для C/A кода.

 

Выводы

 

В автономном режиме с использованием C/A кода остаются ионосферные задержки, тропосферные задержки, эфимеридная ошибка, ошибки частотно-временной синхронизации, ошибки от внутренних и внешних шумов и ошибки из-за многолучевости.

При оценочных расчетах, ошибка в таком режиме составляет 70-100 метров. Метод временного усреднения позволяет исключить тропосферные ошибки что приводит к существенному улучшению точности до единиц метров.

В автономном режиме с использованием P кода устраняются ошибки: эфимеридная, частотно-временная и ионосферная. Таким образом, оценочная точность повышается до 20-30 сантиметров.

В дифференциальном режиме устраняются ионосферные задержки, ошибки часов спутника, эфимеридная ошибка. Таким образом, оценочная точность при использовании фазовой коррекции в этом методе становится равна 20-30 сантиметров. При этом, при использовании временного усреднения, можно исключить непостоянную составляющую ионосферной ошибки и тропосферную ошибку, что приводит к снижению уровня ошибки до 10-15 сантиметров.




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: