Искусственная радиоактивность

В природе не встречаются изотопы, распадающиеся с испусканием позитрона. Такие


* Радиоактивные ряды (радиоактивные семейства) - ряды генетически связанных радиоактивных нуклидов, в которых каждый последующий возникает в результате α- или β- распадов предыдущего.

изотопы впервые получили искусственно в 1934 г. Ф. и И. Жолио-Кюри. Они обнаружили, что при облучении потоком альфа-частиц ядра изотопа алюминия      2713 Al превращаются в ядра изотопа фосфора 3015P, при этом испускаются свободные нейтроны:

2713 Al + 42He = 3015P + 10n (15)

Искусственно полученный изотоп фосфора 3015P оказался радиоактивным; его ядро распадается с испусканием позитрона:

 

3015P = 3014Si + 01e +00νe (16)

Последующие опыты по бомбардировке атомных ядер стабильных изотопов альфа-частицами, протонами, нейтронами и другими частицами показали, что искусственные радиоактивные изотопы могут быть получены практически у всех элементов.

Среди изотопов легких элементов (до кальция) стабильными являются те, в которых содержание протонов и нейтронов примерно одинаково. Нестабильными по отношению к электронному бета-распаду оказываются ядра, в которых число нейтронов заметно больше числа протонов. Изотопы с избытком протонов над числом нейтронов в ядре испытывают позитронный бета-распад.

Искусственные радионуклиды поступают в окружающую среду в результате испытаний ядерного оружия, ядерных взрывов, проводившихся в мирных целях, а также деятельности предприятий ЯТЦ. Локальными источниками служат аварии самолетов с ядерным оружием на борту, гибель подводных лодок, оснащенных атомными силовыми установками и ядерным оружием. В течение ряда лет многие страны, в том числе и СССР, сбрасывали в моря и реки жидкие радиоактивные отходы и затапливали отработавшие ядерные установки. Вклад в техногенную радиоактивность окружающей среды вносят и аварии искусственных спутников Земли с ядерными источниками энергии. Развитие атомной энергетики также привело к тому, что радионуклиды поступали и продолжают поступать в окружающую среду, как при штатной работе АЭС, так и в результате аварийных ситуаций, из которых наиболее серьезные последствия имела авария на Чернобыльской АЭС 26 апреля 1986 г.

 


Ядерное оружие.

Любой из нейтронов, вылетающих из ядра в процессе деления, может в свою очередь вызвать деление соседнего ядра, которое также испускает нейтроны, способные вызвать дальнейшее деление. В результате число делящихся ядер очень быстро увеличивается. Возникает цепная реакция. Ядерной цепной реакцией называется реакция, в которой частицы, вызывающие ее (нейтроны), образуются как продукты этой реакции.

        Рис.5 Цепная ядерная реакция. Цепная реакция сопровождается выделением огромной энергии. При делении каждого ядра выделяется около 200 МэВ. При полном же делении всех ядер, имеющихся в 1 г урана, выделяется энергия 2,3 • 104 кВт•ч. Это эквивалентно энергии, получаемой при сгорании 3 т угля или 2,5 т нефти.

Но для осуществления цепной реакции нельзя использовать любые ядра, делящиеся под влиянием нейтронов. В силу ряда причин из ядер, встречающихся в природе, пригодны лишь ядра изотопа урана с массовым числом 235, т.е. 238 92U.

Для течения цепной реакции нет необходимости, чтобы каждый нейтрон обязательно вызывал деление ядра. Необходимо лишь, чтобы среднее число освобожденных нейтронов в данной массе урана не уменьшалось с течением времени.

Это условие будет выполнено, если коэффициент размножения нейтронов k больше или равен единице. Коэффициентом размножения нейтронов называют отношение числа нейтронов в каком-либо «поколении» к числу нейтронов предшествующего «поколения». Под сменой поколений понимают деление ядер, при котором поглощаются нейтроны старого «поколения» и рождаются новые нейтроны.

Если k 1, то число нейтронов увеличивается с течением времени или остается постоянным и цепная реакция идет. При k<1 число нейтронов убывает и цепная реакция невозможна.

Коэффициент размножения определяется следующими четырьмя факторами:

1) захватом медленных нейтронов ядрами урана с последующим делением и захватом быстрых нейтронов (также с последующим делением);

2) захватом нейтронов ядрами урана без деления;

3) захватом нейтронов   продуктами деления, замедлителем и конструктивными элементами установки;

4) вылетом нейтронов из делящегося вещества наружу.

Лишь первый процесс сопровождается увеличением числа нейтронов (в основном за счет деления 235 92U). Все остальные приводят к их убыли. Цепная реакция в чистом изотопе 23892U невозможна, так как в этом случае k<1 (число нейтронов, поглощаемых ядрами без деления, больше числа нейтронов, вновь образующихся за счет деления ядер).

Для равномерного течения цепной реакции коэффициент размножения нейтронов должен быть ранен единице. Это равенство необходимо поддерживать с большой точностью. Уже при k=1,01 почти моментально произойдет взрыв..

Неуправляемая цепная реакция с большим коэффициентом размножения нейтронов осуществляется в атомной бомбе.

Для того чтобы происходило почти мгновенное выделение энергии (взрыв), реакция должна идти на быстрых нейтронах (без применения замедлителей). Взрывчатым веществом служит чистый уран или плутоний. Чтобы мог произойти взрыв, размеры делящегося материала должны превышать критические. Это достигается либо путем быстрого соединения двух кусков делящегося материала с докритическими размерами, либо же за счет резкого сжатия одного куска до размеров, при которых утечка нейтронов через поверхность падает настолько, что размеры куска оказываются надкритическими.

              Рис. 6 Схема атомной бомбы.

 

То и другое осуществляется с помощью обычных взрывчатых веществ. При ядерном взрыве происходит образование продуктов деления, ядерного синтеза и нейтронной активации.

При делении тяжелых ядер под действием нейтронов образуются сотни различных радионуклидов с разными периодами полураспада. Соотношение продуктов деления зависит от природы делящегося радионуклида и энергии нейтронов. Распределение дочерних продуктов по массовым числам имеет два максимума, находящихся в интервалах 85—105 и 130—150. Реакции ядерного синтеза протекают при взрыве термоядерных боеприпасов. При этом происходит, в частности, слияние ядер дейтерия и трития с образованием альфа-частицы и нейтрона. При взрыве бомбы температура достигает десятков миллионов кельвин. При такой температуре резко повышается давление и образуется мощная взрывная волна. Одновременно возникает мощное излучение. Продукты цепной реакции при взрыве бомбы сильно радиоактивны и опасны для живых организмов.

Атомные бомбы были применены США в конце второй мировой войны против Японии. В 1945 г. Они были сброшены на японские города Хиросима и Нагасаки.

Эти акты массового уничтожения людей не были вызваны военной необходимостью, так как в то время капитуляция Японии уже была предрешена. С созданием ядерного оружия победа в войне стала невозможной. Ядерная война способна привести человечество к гибели, поэтому народы всего мира настойчиво борются за запрещение ядерного оружия. Испытания ядерного оружия в атмосфере стали основным источником искусственной радиоактивности в окружающей среде (до 95%). Выпадения радионуклидов происходили неоднородно по поверхности планеты. Около 76% глобальных выпадений стронция-90 пришлось на северное полушарие, где было проведено 90% от общего числа испытаний. Максимум глобальных выпадений при пришелся на 40-50° с.ш.

При проведении подземных ядерных взрывов большая часть радионуклидов остается в полости взрыва, однако во многих случаях наблюдается выброс в атмосферу радиоактивных газов и других летучих продуктов взрыва.

В термоядерной (водородной) бомбе источником высокой температуры, которая необходима для термоядерного синтеза, служит взрыв атомной бомбы (урановой или плутониевой), помещенной внутри термоядерной. Технические возможности увеличения энергии взрыва этих бомб ничем не ограничены.

Пример цепной реакции:  239 92U → 239 93Np + 0 -1e

                                         239 93Np → 239 94Pu + 0 -1e

 

Атомный реактор.

Ядра урана, особенно ядра изотопа 235 92U, наиболее эффективно захватывают медленные нейтроны. Вероятность захвата медленных нейтронов с последующим делением ядер в сотни раз больше, чем быстрых. Поэтому в ядерных реакторах, работающих на естественном уране, используются замедлители нейтронов для повышения "коэффициента размножения нейтронов

Рис.7 Атомный реактор.

Основные элементы ядерного реактора: ядерное горючее (235 92U, 239 92Pu, 23892U  и др.), замедлитель нейтронов (тяжелая или обычная вода, графит и др.), теплоноситель для вывода энергии, образующейся при работе реактора (вода, жидкий натрий и др.) и устройство для регулирования скорости реакции (вводимые в рабочее пространство реактора стержни, содержащие кадмий или бор — вещества, которые хорошо поглощают нейтроны).

Снаружи реактор окружают защитной оболочкой, задерживающей

γ-излучение и нейтроны. Оболочку выполняют из бетона с железным заполнителем.

Лучшим замедлителем является тяжелая вода. Обычная вода сама захватывает нейтроны и превращается в тяжелую воду. Хорошим замедлителем считается также графит, ядра которого не поглощают нейтронов.

Коэффициент размножения k может стать равным единице лишь при условии, что размеры реактора и соответственно масса урана превышают некоторые критические значения. Критической массой называют наименьшую массу делящегося вещества, при которой может протекать цепная ядерная реакция.

При малых размерах слишком велика утечка нейтронов через поверхность активной зоны реактора (объем, в котором располагаются стержни с ураном).

С увеличением размеров системы число ядер, участвующих в делении, растет пропорционально объему, а число нейтронов, теряемых вследствие утечки, увеличивается пропорционально площади поверхности.

Поэтому, увеличивая размеры системы, можно достичь значения коэффициента размножения k приблизительно равного 1. Система будет иметь критические размеры, если число нейтронов, потерянных вследствие захвата и утечки, равно числу нейтронов, полученных в процессе деления. Критические размеры и соответственно критическая масса определяются типом ядерного горючего, замедлителем и конструктивными особенностями реактора.

Для чистого (без замедлителя) урана 23592U, имеющего форму шара, критическая масса приблизительно равна 50 кг. При этом радиус шара равен примерно 9 см (уран очень тяжелое вещество). Применяя замедлители нейтронов и отражающую нейтроны оболочку из бериллия, удалось снизить критическую массу до 250 г.

Управление реактором осуществляется при помощи стержней, содержащих кадмий или бор. При выдвинутых из активной зоны реактора стержнях k>1, а при полностью вдвинутых стержнях k<1. Вдвигая стержни внутрь активной зоны, можно в любой момент времени приостановить развитие цепной реакции. Управление ядерными реакторами осуществляется дистанционно с помощью ЭВМ.

Аварии.

 

В настоящее время на дне Атлантического океана покоятся пять погибших атомных подводных лодок (две американских и три отечественных), которые являются потенциальными источниками техногенных радионуклидов. Однако, как показали многолетние наблюдения за затонувшей в Норвежском море АПЛ «Комсомолец», поступление радионуклидов за пределы корпуса лодки происходит крайне медленно, кроме того, многие радионуклиды прочно сорбируются донными осадками, так что серьезной опасности для окружающей среды затонувшие АПЛ, по-видимому, не представляют.

В 1968 г. в 11 км к западу от авиабазы Туле, вблизи побережья Гренландии, произошла катастрофа американского самолета В-52, несущего четыре ядерные боеголовки. В результате взрыва самолета плутоний, содержавшийся в боеприпасах, был перемешан со льдом, а также частично поступил под лед с фрагментами боеголовок. В итоге в донные осадки попало около 1 ТБк плутония. В 1966 г. произошло столкновение в воздухе двух самолетов американских ВВС над побережьем Испании. В результате произошло падение четырех термоядерных бомб: три упали на берег, одна — в Средиземное море. Однако эти инциденты не привели к серьезным последствиям для окружающей среды, поскольку большая часть плутония была удалена в результате своевременных дезактивационных работ.

В 1964 г. потерпел аварию американский навигационный спутник: он не вышел на орбиту и упал в Индийский океан. Энергоснабжение спутника обеспечивалось изотопным источником энергии. Авария спутника привела к распылению в атмосфере 629 ТБк 238Pu. Около 95% этого плутония выпало на поверхность Земли к концу 1970 г. Падение спутника привело к существенному изменению соотношения изотопов плутония в глобальных выпадениях.

Авария советского спутника «Космос-954» в 1978 г. привела к поступлению в окружающую среду продуктов деления из бортового атомного реактора. Примерно три четверти от общего количества радионуклидов рассеялись в верхних слоях атмосферы. Падение обломков произошло на территории Северной Америки.

Известен ряд аварий на предприятиях ядерного топливного цикла. Например, в Селлафилде в 1957 г. произошла авария на исследовательском реакторе с расплавлением активной зоны.

27 сентября 1957 г. произошла авария в Кыштыме (Челябинская область) на предприятии по переработке радиоактивных отходов, где находились около 60 охлаждаемых водой емкостей из нержавеющей стали объемом по 250 м3 с высокорадиоактивными отходами. В результате перебоя в подаче охлаждающей воды произошел взрыв мощностью 5—10 кт. Было эвакуировано 23 населенных пункта с населением 10180 человек. Радиоактивное облако поднялось на высоту 1 км и стало перемещаться на северо-восток.

 

Рис.8     Схема атомной электростанции.

Однако наиболее серьезная авария произошла на Чернобыльской АЭС в ночь на 26 апреля 1986 года. На Чернобыльской АЭС были установлены реакторы типа РБМК (реактор большой мощности кипящий), основной компонент выбросов которых в окружающую среду — РГ (радиоактивные газы), не создающие опасности внутреннего облучения. Штатная загрузка РБМК — 192 т ядерного топлива (UO2) с обогащением 2% и 1760 т графита. Для предотвращения окисления графита в кожух реактора подается газовая смесь, состоящая из 80% гелия и 20% водорода. Полная кампания топлива длится 1080 суток. За это время в топливе накапливается свыше 500 радионуклидов от трития до кюрия с общей активностью 6,8 • 1020 Бк. Среди этих радионуклидов достаточно много короткоживущих, активность которых быстро уменьшается со временем.

Авария на ЧАЭС произошла в результате грубейших нарушений техники безопасности при остановке 4-ого блока для проведения замены тепловыделяющих элементов. Произошел взрыв. Рассеяние крупных осколков топлива наблюдалось на расстоянии до сотен метров. Затем загорелся графит. Из общего количества накопившихся в реакторе РБМК радионуклидов при аварии 4-го блока ЧАЭС значительная часть была выброшена в окружающую среду. По мере того как графитовый компонент сердцевины реактора выгорал, он позволял оставшемуся топливу разъедать нижнюю биологическую защиту (НБЗ) и протекать в нижние части здания реактора. Через девять дней сердцевина реактора быстро затвердела и авария остановилась без прямого вмешательства человека (сбрасывание различных материалов с вертолета было неэффективным). Тепло распада быстро снизилось в связи с захватом окружающих материалов (нержавеющей стали и серпентина НБЗ) в соединении с быстрым распространением расплавленного топлива на расстояние до 40 м от эпицентра расплавленной сердцевины.

В течение первых 9 дней после аварии наблюдались четыре фазы процесса:

• первая фаза (26 апреля) — механическая дисперсия топлива;

• вторая фаза (27 апреля-1 мая) — спад уровня выброса; уменьшение горения графита;

• третья фаза (2—5 мая) — сердцевина разогревается до температуры выше 2000°С; протекает реакция между кислородом и графитом; аэрозольные формы продуктов деления комбинируются с частицами графита;

• четвертая фаза (5—6 мая) — быстрое снижение эмиссии продуктов деления, связанное с остановкой процесса деления. [2]

Выброс радиоактивных продуктов в атмосферу продолжался до конца августа со скоростью нескольких кюри в день.

В саркофаге, сооруженном вокруг аварийного блока, находится от 1270 до 1350 т содержащих топливо материалов (около 10,5% частично им горевшего ядерного топлива), 64000 м3 других материалов (цемент, строительные материалы и др.), приблизительно 10000 т строительных металлоконструкций и от 800 до 1000 т загрязненной воды. В затвердевших остатках топлива остается значительное количество цезия-137 (35% от его исходного количества).

Главные пятна загрязнения на территории бывшего СССР — площади с уровнем радиоактивности на грунте более 560 кБк/м2. Большие площади на Украине и в Белоруссии имели уровень радиоактивности выше 40 кБк/м2. Наиболее загрязнена была 30-километровая зона, окружающая реактор, где уровень загрязнения цезием-137 обычно превосходил 1500 кБк/м2. В наиболее загрязненном Брянско-Белорусском пятне, находящемся в 200 км к северо-северо-востоку от 4-ого блока, уровень загрязнения цезием-137 достигал 5 МБк/м2.

Предельно высокие уровни выпадений, в том числе и в местах, находящихся в тысячах километров от места аварии, в основном были связаны с дождями. Сухие выпадения играли существенно меньшую роль в распространении Чернобыльских радионуклидов, чем в случае выпадений после испытаний ядерного оружия.

Все эти аварии - наглядный пример того, как опасна может быть радиация.

 

Часть 3.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: