Описание входных и выходных переменных

В качестве входных переменных имеем массив независимых значений Х и фактические значения отклика YF, точность вичислений eps.

Выходные величины – конечне значения p1 и p2, при которых достигается минимум функции F(p1,p2), количество итераций, что характеризует скорость сходимости метода и значение функции F(p1,p2), а также график сравнения фактического и расчетного значения отклика и таблицу с фактическим и расчетным значениями отклика.

Текст программы в SciLab

 

//Входные данные

X1=[1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6];

YF=[20 30 70 85 100 90 100 108 120 110 124]; //Y фактическое

//Расчетная функции в виде у=р1-р2expХ1)

function YR=raschet(P)

YR=P(1)-P(2)*exp(-X1);

endfunction

//Минимизируемая функция как результат

//ошибки расчетных и фактических значений

function F=oshibka(P)

F=sum((YF-raschet(P))^2);

endfunction

eps=0.00001; //точность вычислений

P=[10 0.9]; //начальное приближение

lamda=1; //параметр,характеризующий длину шага

F0=oshibka(P*2);

F=oshibka(P);

i=0;

while abs(F0-F)>eps

i=i+1;

P0=P;

GR=numdiff(oshibka,P0);

P=P0-lamda*GR;

F0=oshibka(P0);

F=oshibka(P);

if F0<F

lamda=lamda/2;

end

end

Значения р1 и р2, при которых ошибка расчетов минимальна'

p1=P(1)

p2=P(2)

Скорость схождения(количество циклов)'

i

Y=raschet(P);

'Таблица результатов расчета'

[X1;YF;Y;(YF-Y)^2]'

'Среднее квадратическое отклонение'

sigma=F

scf(1);

plot(X1,YF,'k.',X1,Y,'k-');

xgrid(1);

 

Результаты работы программы

Значения р1 и р2, при которых ошибка расчетов минимальна

p1 = 110.90905

p2 = 282.44884

Скорость схождения(количество циклов)

i = 502.

 

Таблица результатов расчета

XYFYR (YF-YR)^2

1. 20. 7.0019302 168.94982

1.5 30. 47.886197 319.91604

2. 70. 72.683758 7.2025575

2.5 85. 87.724239 7.4214795

3. 100. 96.846752 9.9429717

3.5 90. 102.37984 153.26034

4. 100. 105.73582 32.899642

4.5 108. 107.77133 0.0522905

5. 120. 109.00593 120.86965

5.5 110. 109.75475 0.0601485

6. 124. 110.20893 190.19358

 

Среднее квадратическое отклонениеsigma = 1010.7685

Блок-схема программы


 


Задание 5. Разработка аналитических моделей объектов автоматизации. Линеаризация моделей

 

5.1 Постановка задачи

Разработайте математическую модель заданной динамической системы. Построить аналитическую модель емкости с одним притоком и двумя стоками (например двухручьевая МНЛЗ) и провести ее линеаризацию. Математическую модель заданного объекта представить в виде программы на ЭВМ, рассчитать кривые исходной и линеаризованной модели отклика модели на ступенчатое и импульсное воздействие. Предложить методику идентификации параметров модели. Какие эксперименты будет необходимо провести на реальном объекте? Оцените необходимый объем и форму представления результатов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: