Классификация и свойства сигналов

ВВЕДЕНИЕ

 

К числу важных областей науки и техники, достижения которых непосредственно способствуют росту материального и культурного уровня общества, принадлежит радиотехника.

Радиотехника – научно-техническая область, задачами которой являются:

1) изучение принципов генерации, усиления, излучения и приема электромагнитных колебаний и волн, относящихся к радиодиапазону;

2) практическое использование этих колебаний и волн для целей передачи, хранения и преобразования информации.

В настоящее время круг применения радиотехники необычайно велик. Радиосвязь, телевидение, радиоуправление, радиолокация, радионавигация, радиотехнические методы в биологии, медицине, геофизике – таков далеко не полный перечень отраслей радиотехники.

В наши дни радиотехника является бурно развивающейся научно-прикладной областью. Говоря о ближайших перспективах ее развития, следует подчеркнуть тенденцию перехода к все более высокочастотным диапазонам электромагнитных колебаний и волн. Так, колебания сверхвысокочастотного (СВЧ) диапазона, ранее применявшиеся в основном в радиолокации, стали широко использоваться в телевизионных, связных и телеметрических радиоканалах. Достигнуты большие успехи в создании лазерных линий связи с несущими частотами, лежащими в световом и инфракрасном диапазонах.

Быстрыми темпами развивается элементная база радиотехники и радиоэлектроники. Если традиционные радиотехнические цепи представляли собой почти исключительно комбинации линейных и нелинейных электрических цепей, то сейчас интенсивно исследуются и внедряются в практику функциональные устройства и системы, производящие обработку сигналов за счет специфических волновых и колебательных явлений в твердых телах — полупроводниках, диэлектриках и магнитных материалах. Огромную роль в современной радиотехнике играют изделия микроэлектронной технологии. Доступные, недорогие, надежные и быстродействующие интегральные микросхемы решающим образом изменили облик многих областей радиотехники. Микроэлектроника обусловила широкий переход к принципиально новым цифровым способам обработки и преобразования радиотехнических сигналов.

Есть все основания ожидать, что отрасли радиотехники будут и впредь расширяться и развиваться на базе прогресса во многих смежных областях науки и техники.

Как известно передача сообщения от источника к получателю с помощью радиотехнических методов осуществляется по радиоканалу и сопровождается разнообразными преобразованиями сигналов. Эти преобразования осуществляются посредством соответствующих физических систем – радиотехнических цепей. Каждая радиотехническая цепь выполняет определенную операцию над сигналами, характер которой целиком зависит от внутренней структуры цепи.

Задачи курсовой работы

Задачи данной курсовой работы:

 

- выполнить расчёт спектра одиночного непериодического видеосигнала;

- выполнить расчёт спектра периодической последовательности видеосигнала;

- выполнить расчёт спектра одиночного непериодического радиосигнала;

- выполнить расчёт спектра периодической последовательности радиосигнала;

 

Классификация и свойства сигналов

 

Под сигналом s(t) будем понимать изменение во времени одного из параметров физического процесса.

Сигналы можно классифицировать:

 

 

Детерминированным называется сигнал, который точно определен в любой момент времени (например, задан в аналитическом виде). Детерминированные сигналы могут быть периодическими и непериодическими.

Периодическим называется сигнал, для которого выполняется условие

s(t) = s(t + кT), где к - любое целое число, Т - период, являющийся конечным отрезком времени. Пример периодического сигнала - гармоническое колебание

Любой сложный периодический сигнал может быть представлен в виде суммы гармонических колебаний с частотами, кратными основной частоте

Непериодический сигнал, как правило, ограничен во времени.

Случайным сигналом называют функцию времени, значения которой заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью.

В качестве основных характеристик сигналов принимают:

1) Среднее значение сигнала

, где - интервал времени на котором определен сигнал

2) Мгновенная мощность сигнала

3) Энергия сигнала

4) Средняя мощность сигнала

Для периодических сигналов данные характеристики рассматривают в пределах одного периода.

 

 Спектральные характеристики периодических сигналов

 

Для упрощения методов решения задач анализа цепей сигналы представляют в виде суммы определенных функций.

Этот процесс обосновывается понятием обобщенного ряда Фурье. В математике доказано, что любая функция, удовлетворяющая условиям Дирихле, может быть представлена в виде ряда:

.

Для определения  умножим левую и правую части ряда на  и возьмем интеграл от левой и правой части:

, для интервала [a;b] в котором выполняются условия ортогональности.

Видно, что .Получили выражение для обобщенного ряда Фурье:

Выделим конкретный вид функции , для разложения в ряд сигнала . В качестве такой функции выберем ортогональную систему функций:

Для определения ряда вычислим значение :

.

, так как .

Таким образом, получим:

,

где .

Графически данный ряд представляется в виде двух графиков амплитудных гармонических составляющих.

Полученное выражение можно представить в виде:

, где ; .

Получили вторую форму записи тригонометрического ряда Фурье. Графически данный ряд представляется в виде двух графиков - амплитудного и фазового спектров.

Найдем комплексную форму ряда Фурье, для этого воспользуемся формулами Эйлера:

;

 

,или , где

Графически спектр в этой форме представлен на оси частот в диапазоне .

Очевидно, что спектр периодического сигнала, выраженный в комплексной или амплитудной форме – дискретный. Это значит, что в спектре имеются составляющие с частотами

  Спектральные характеристики непериодического сигнала

Так как в качестве непериодического сигнала в радиотехнике рассматривают одиночный сигнал, то для нахождения его спектра представим сигнал как периодический с периодом стремящимся к бесконечности. Воспользуемся преобразование ряда Фурье для данного периода. Получим для :

.

Анализ полученного выражения показывает, что при амплитуды составляющих становятся бесконечно малыми и на оси частот они расположены непрерывно. Тогда, что б выйти из этого положения воспользуемся понятием спектральной плотности:

Подставим полученное выражение в комплексный ряд Фурье, получим:

Окончательно получим:

Здесь - спектральная плотность, а само выражение – прямое преобразование Фурье. Для определения сигнала по его спектру используют обратное преобразование Фурье:

 

  Свойства преобразования Фурье

 

Из формул прямого и обратного преобразований Фурье, очевидно, что если изменится сигнал, то изменится и его спектр. Следующие свойства устанавливают зависимость спектра измененного сигнала, от спектра сигнала до изменений. 

1) Свойство линейности преобразования Фурье

, т.е.

Получили, что спектр суммы сигналов равен сумме их спектров.

 

2) Спектр сигнала сдвинутого во времени

Получили, что при сдвиге сигнала амплитудный спектр не изменяется, а изменяется только фазовый спектр на величину .

3) Изменение масштаба времени

т.е при расширении(сужении) сигнала в несколько раз спектр этого сигнала сужается(расширяется).

4) Спектр производной от сигнала

Возьмем производную от левой и правой части обратного преобразования Фурье.

Видим, что спектр производной от сигнала равен спектру исходного сигнала умноженного на , то есть изменяется амплитудный спектр и меняется фазовый на .

5) Спектр интеграла сигнала

Возьмем интеграл от левой и правой части обратного преобразования Фурье.

Видим, что спектр производной от сигнала равен спектру исходного сигнала деленного на ,

6) Спектр произведения двух сигналов

Таким образом, спектр произведения двух сигналов равен свертке их спектров умноженной на коэффициент .

7) Свойство дуальности

;

Таким образом, если к какому-то сигналу  соответствует спектр , то сигналу по форме совпадающему с вышеуказанным спектром соответствует спектр по форме совпадающий с вышеуказанным сигналом.


 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: