Т е о р е м а. В ЕП(УП) координаты
вектора
в ОНБ
вычисляются по правилу
. (3.6)
Доказательство. Умножим вектор
скалярно на
:
.
Таким образом, координаты произвольного элемента относительно ОНБ равны скалярным произведениям этого элемента на соответствующие базисные элементы (проекция элемента
на элемент
. #
Т е о р е м а. В ЕП(УП) скалярное произведение векторов
и
, заданных своими координатами в ОНБ e вычисляется по правилу
. # (3.7)
Замечание. В ЕП черта может быть опущена:

Таким образом, в ОНБ СП любых двух элементов равно сумме произведений соответствующих координат этих элементов.
О п р е д е л е н и е. Матрица
называется ортогональной, если
.
О п р е д е л е н и е. Матрица
называется унитарной, если
.
Т е о р е м а. Во всяком n-мерном ЕП(УП) существует ОНБ.
Д о к а з а т е л ь с т в о. Пусть
,
- произвольный базис Е (U). Докажем, что можно построить n элементов
, линейно выражающихся через
и образующих ОНБ. Используем индукцию по n. При n =1 утверждение очевидно: достаточно взять любой вектор
и положить
.
Убедимся в том, что если для n- 1 построена последовательность ортонормированных элементов
, то следующий элемент
можно вычислить по формуле
Пусть в (n -1)-мерном ЕП(УП) существует ОНБ; покажем, что ОНБ существует и в n -мерном E(U). Линейная оболочка
является (n -1)-мерным пространством и в нем по индуктивному предположению существует ОНБ
. Так как
, то вектор
отличен от нулевого вектора при любых
. Будем выбирать коэффициенты
из условия ортогональности вектора
всем векторам
:
, или
.
Тогда, положив
, получим ОНБ
пространства E(U). #
Алгоритм построения по данной системе n линейно независимых элементов
системы n попарно ортонормированных элементов
называется процессом ортогонализации Грамма-Шмидта. Он состоит в следующем:
Первый шаг. Полагая
находим
.
k-й шаг (
). Полагаем
, (3.8)
где
, и находим
.
Через n шагов получим ОНБ
пространства.
Более подробно:
,
,
,
,
,
……………………………………………………………….
,
.
Матрица Грама
Матрицей Грама системы векторов
ЕП(УП) называется матрица
. (4.1)
Определитель матрицы Грама называется определителем Грама.
Т е о р е м а. Система векторов
ЕП(УП) линейно зависима тогда и только тогда, когда
.
Д о к а з а т е л ь с т в о. Необходимость. Пусть
. -линейно зависимая система векторов. Последовательно умножая нетривиальную линейную комбинацию
(4.2)
скалярно на векторы
, получим однородную систему уравнений относительно неизвестных
:
(4.3)
с матрицей коэффициентов
. Из существования нетривиального решения полученной системы уравнений следует, что
.
Достаточность. Пусть
. Тогда система имеет нетривиальное решение
. Перепишем систему в виде
(4.4)
Это значит, что вектор
, с одной стороны, принадлежит
, а с другой стороны, ортогонален
. Согласно аксиоме 4) скалярного произведения вектор
может быть только нулевым. Значит, для векторов
имеет место соотношение, откуда с учетом нетривиальности набора
следует линейная зависимость векторов
. #
О п р е д е л е н и е. Матрица
называется эрмитовой матрицей, если
. (4.5)
Матрица
называется симметрической матрицей, если
. (4.6)
Т е о р е м а. Матрица Грамма системы векторов ЕП(УП) эрмитова.
Д о к а з а т е л ь с т в о. Пусть
. Из (4.1) следует, что
, т.е.
. Это означает, что
или, в вещественном случае
. #
Т е о р е м а. Определитель Грамма линейно независимой системы векторов в ЕП(УП) положителен.
Д о к а з а т е л ь с т в о.. Пусть
линейно независимая система векторов ЕП(УП). Тогда
. Выберем ОНБ
линейной оболочки
. Составим матрицу

столбцами которой являются координаты векторов
в базисе
. Тогда
. Следовательно,
(4.7)
и
. Таким образом,
. (4.8)
Так как система
линейно независима, то
. Отсюда с учетом (4.7) следует, что
. #
Замечание. В вещественном случае Матрица Грама запишется в виде
.






