Исполнительные двигатели постоянного тока

 

Микродвигатели постоянного тока, применяемые в автоматических устройствах для преобразования электрического сигнала в механическое перемещение вала, называются исполнительными двигателями.

В зависимости от конструкции якоря исполнительные двигатели постоянного тока подразделяют на двигатели с якорем обычного типа, полым (печатным) и беспазовым (гладким) якорем.

  Двигатели с якорем обычного типа отличаются от машин постоянного тока нормального исполнения шихтованной системой полюсов и ненасыщенной магнитной системой. Первое необходимо, поскольку эти двигатели, в основном, работают в переходных режимах, второе - для уменьшения влияния реакции якоря. Вместо шихтованных полюсов с обмоткой возбуждения в двигателях часто устанавливают постоянные магниты.

Для уменьшения влияния реакции якоря и ЭДС самоиндукции коммутирующей секции и улучшения условий коммутации применяют двигатели с гладким якорем (рис. 10.1). Обмотку 1 такого якоря укладывают на наружной поверхности якоря 2. Ее выполняют в два слоя и заливают эпоксидной смолой с ферромагнитным наполнителем 3.

Микродвигатели этого типа имеют более высокое быстродействие по сравнению с машинами с зубчатым якорем из-за большей индукции в воздушном зазоре(индукция не ограничивается насыщением зубцов) и меньшего момента инерции якоря. Уменьшение момента за счет уменьшенного диаметра (при увеличенной длине). Последнее возможно, поскольку лучшие условия коммутации позволяют значительно увеличить длину и уменьшить диаметр якоря

Значительно снижена инерция в двигателях с полым якорем. Магнитный поток в них создается обмоткой возбуждения (рис. 10.2) или постоянными магнитами, якорь представляет полый стакан 1, расположенный между полюсами 2 с обмоткой возбуждения 3 и неподвижным ферромагнитным сердечником 4, который насаживают на втулку 5 подшипникового щита. Вместо сердечника внутри якоря может быть установлен неподвижный цилиндрический магнит. Обмотку якоря 6 укладывают на цилиндрический каркас и заливают эпоксидным компаундом, концы секций обмотки, как и в обычном двигателе, соединяют с пластинами коллектора 7. Обмотка может быть выполнена и фотохимическим способом (печатная обмотка). Момент инерции полого якоря невелик, благодаря чему существенно повышается быстродействие двигателя. Отсутствие насыщения в зубцах позво-

ляет значительно увеличить индукцию в воздушном зазоре машины, то есть ее магнитный поток и номинальный вращающий момент по сравнению с микродвигателями, имеющими якорь обычного типа, что также способствует повышению быстродействия двигателя.

Поскольку секции обмотки якоря окружены не ферромагнитным материалом, а воздухом, они имеют гораздо меньшую индуктивность, что существенно улучшает условия коммутации двигателя. Щетки в таких микродвигателях работают практически без искрения даже при кратковременных перегрузках, вследствие чего можно применять большие форсировки для ускорения переходных процессов.

Недостатком микродвигателей с полым якорем является необходимость значительного увеличения МДС обмотки возбуждения, так как немагнитный зазор у них гораздо больше, чем в обычных двигателях, что приводит к увеличению потерь в обмотке возбуждения. КПД рассматриваемых двигателе из-за отсутствия потерь мощности в стали имеет такую же величину, как и у микродвигателей с якорем обычной конструкции.

Разновидностью двигателя с полым якорем является двигатель с дисковым якорем, у которого печатная обмотка нанесена на немагнитный диск. Магнитный поток создается постоянными магнитами или электромагнитами, расположенными по одну сторону диска с обеих сторон. В исполнительных двигателях постоянного тока обмотки якоря и главных полюсов питаются от двух независимых источников тока. Одна из них (условно называемая обмоткой возбуждения) подключена постоянно к источнику с неизменным напряжением UB, а на другую (обмотку управления) подается напряжение управления U У только при необходимости вращения вала двигателя. В зависимости от того, на какую обмотку подается управляющий сигнал, различают два способа управления исполнительными двигателями - якорное (рис. 10.3, а) и полюсное (рис. 10.3, б).

Каждый из этих способов имеет свои преимущества и недостатки. При полюсном управлении меньше мощность управления, а при якорном - выходные характеристики параллельны и линейны.

 

Тахогенераторы

Тахогенераторы относят к информационным машинам, то есть к машинам от которых требуется высокая точность преобразования электрических или механических входных - сигналов управления соответственно в механические или электрические выходные величины, находящиеся в строго постоянной вполне определенной зависимости от входных сигналов. Тахогенераторы преобразуют частоту вращения механизма, с валом которого они соединены, в строго пропорциональное выходное напряжение:

,             (10.1)

где  частота вращения,  угол, на который перемещается вал механизма, связанного с тахогенератором.

В системах автоматики тахогенераторы служат:

для измерения частоты вращения (в этом случае выходное напряжение подается на вольтметр, шкала которого отградуирована в об/мин);

для осуществления обратной связи по скорости в следящих системах;

для осуществления электрического дифференцирования

 (  и интегрирования .

Тахогенераторы постоянного тока по принципу действия и конструктивному оформлению представляют собой машины постоянного тока чаще с возбуждением от постоянных магнитов (рис. 10.4, б), реже с электромагнитным возбуждением (рис. 10.4, а). В них используют якорь обычного типа, полый или дисковый с печатной обмоткой.

 

 


Выходное напряжение тахогенератора  выражают, как и напряжение обычного генератора постоянного тока, через ЭДС якоря , падение напряжения в обмотке якоря  и падение напряжения на щеточном контакте :

 

.         (10.2)

 

Представив в (10.2) ЭДС по (4.5), ток через напряжение и сопротивление нагрузки:

 

,               (10.3)

 

получим:

 

.      (10.4)

 

Решив это равенство относительно напряжения , найдем выражение для выходного напряжения:

 

.       (10.5)

 

При  выходное напряжение

 

.             (10.6)

 

При постоянном потоке Ф, сопротивлениях якоря  и нагрузки

 

,                   (10.7)

где  называют крутизной характеристики генератора.

Крутизна выходной характеристики растет с уменьшением  и увеличением  и при холостом ходе крутизна характеристики наибольшая (рис. 10.4, в, кривая 1 ). При уменьшении сопротивления нагрузки крутизна меньше (кривая 2 на рис. 10.4, в). В реальных тахогенераторах сопротивление щеточного контакта не равно нулю и выходная характеристика  пересекает ось ординат (при ) не в начале координат, а в точке  прямая 3 на рис. 10.4, в.

Зону частот вращения от  до , при которых выходное напряжение , называют зоной нечувствительности. Для уменьшения зоны нечувствительности тщательно подбирают щетки медно-графитные или серебряно-графитные, иногда выполняя их с напылением серебра или золота.                     

Практически выходная характеристика отклоняется от линейного закона в результате размагничивающего действия реакции якоря(кривая 4 на рис. 10.4, в), наличия нелинейного сопротивления в переходном контакте между коллектором и щетками и изменения тока возбуждения из-за увеличения сопротивления обмотки возбуждения при ее нагреве. Для уменьшения погрешности увеличивают сопротивление внешней нагрузки, суживают пределы измерения скорости механизмов, выполняют тахогенераторы с сильно насыщенной магнитной системой. Последнее уменьшает влияние изменения сопротивления обмотки возбуждения при нагреве и размагничивающее действие реакции якоря.

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: