Пробоотбор и подготовка образцов к химическому анализу

Для проведения физико–химического анализа вначале проводят пробоотбор, используя метод конверта. Почва изымалась с глубины 10 см, по 800–900 мг каждого образца.

Пробы нужно взять на разных территориях. Затем почва высушивается и измельчается, из нее удаляются посторонние примеси и частицы при помощи набора сит с отверстиями разного диаметра от 5 до 1 мм и сокращении массы до 500 г. Для сокращения пробы использовали метод квадратования: Измельченный материал тщательно перемешать и рассыпать ровным тонким слоем в виде квадрата, разделили его на четыре сектора. Содержимое двух противоположных секторов отбрасывали, а два оставшихся снова смешивали, после многократных повторений оставшуюся пробу высушили до воздушного состояния для получения водных вытяжек.(Приложение1)

Приготовление водной вытяжки.

Для приготовления водной вытяжки достаточно 20 г воздушно – сухой просеянной почвы. Почву помещали в колбу на 100 мл, добавляли 50 мл дистиллированной воды и взбалтывали в течение 5–10 минут, а затем фильтровали.(Приложение 2)

Определение актуальной кислотности почвы.

Реакция почвы оказывает большое влияние на развитие растений и почвенных микроорганизмов, на скорость и направленность происходящих в ней химических и биохимических процессов. В природных условиях рН почвенного раствора колеблется от 3 до 10. Чаще всего кислотность почвы не выходит за пределы 4–8. Связь между кислотностью почвы и величиной рН приведена в (Приложение№3 табл. 1.)

Актуальная (активная) кислотность – кислотность почвенного раствора. Этот вид кислотности оказывает непосредственное влияние на корни растений и почвенные организмы. Актуальную кислотность определяют в водной почвенной вытяжке. Для этого необходимо поместить в пробирку или колбу 2 г почвы, добавить 10 мл.дистиллированной воды; полученную суспензию 1: 5 хорошо встряхнуть и дать отстоять осадку; в над осадочную жидкость внести полоску индикаторной бумаги и, сравнить её цвет с цветной таблицей, сделать вывод о величине pH почвы. Полученные результаты. (Приложение№3 таб.№2)

Полученные результаты:

Таблица №2

Номер пробы рН Кислотность
№1 6,5 Слабокислая
№2 6,5 Слабокислая
№3 6,6 Слабокислая
№4 6,5 Слабокислая

В кислых почвах (pH 4.0–5.5) железо, аллюминий и марганец находятся в формах доступных растениям, а их концентрация достигает токсического уровня. При этом затруднено поступление в растения фосфора, калия, серы, кальция, магния, молибдена. На кислой почве может наблюдаться повышенный выпад растений без внешних причин – вымочка, гибель от мороза, развитие болезней и вредителей. Напротив, в щелочных (pH 7.5–8.5) железо, марганец, фосфор, медь, цинк, бор и большинства микроэлементов становятся менее доступными растениям.

Оптимальным считается pH 6.5 – слабокислая реакция почвы. Следовательно, в почве нашего пришкольного участка, имеющего слабо кислую среду, что не ведет к недостатку фосфора и микроэлементов, большинство основных питательных веществ доступны растениям, т. е. находятся в почвенном растворе. Такая почвенная реакция благоприятна для развития полезных почвенных микроорганизмов, обогащающих почву азотом.

Качественное определение химических элементов в почве.

Карбонат–ионы.

Одним из показателей валового состава почвы является содержание

в ней СО2 карбонатов. Наличие или отсутствие свободных карбонатов является важным диагностическим признаком почв и их отдельных генетических горизонтов. Присутствие в почве заметных количеств карбонатов препятствует развитию кислотности, а иногда приводит к возникновению щелочности, что оказывает важное влияние на подвижность многих веществ в почве и на агроэкологические особенности почв. Этот показатель нужен также для различных пересчетов, необходимых при интерпретации данных о содержании других компонентов валового химического состава почв.

О примерном содержании карбонатов и соответственно размерах навески для анализа можно судить по характеру вскипания почвы (пробы) от 2–3 капель 10%–ного раствора HCl.

Небольшое количество почвы помещают в фарфоровую чашку и приливают пипеткой несколько капель 10%–го раствора соляной кислоты. Образующийся по реакции оксид углерода (IV) CO2 выделяется в виде пузырьков (почва “шипит”). По интенсивности их выделения судят о более или менее значительном содержании карбонатов.(Приложение№4 таб.3)

Полученные результаты:

№1 – вскипание отсутствует

№2 – вскипание отсутствует

№3 –очень слабое и кратковременное

№4 – вскипание отсутствует

Определение сульфат–ионов.

К 5 мл фильтрата добавить несколько капель концентрированной соляной кислоты и 2–3 мл 20%–го раствора хлорида бария. Если образующийся сульфат бария выпадает в виде белого мелкокристаллического осадка, это говорит о присутствии сульфатов в количестве нескольких десятых процента и более. Помутнение раствора также указывает на содержание сульфатов – сотые доли процента. Слабое помутнение, заметное лиши на черном фоне, бывает при незначительном содержании сульфатов – тысячные доли процента.

№ 1- хорошо заметно выпадение осадка

№ 2- хорошо заметно выпадение осадка

№ 3- хорошо заметно выпадение осадка

№ 4- хорошо заметно выпадение осадка

Определение железо (II и III).

В две пробирки внести по 3мл вытяжки. В первую пробирку прилить несколько капель раствора красной кровяной соли K3[Fe(CN)6)], во вторую – несколько капель 10%–го раствора роданида калия KSCN. Появившееся синее окрашивание в первой пробирке и красное во второй свидетельствует о наличии в почве соединений железа (II) и железа (III). По интенсивности окрашивания можно судить об их количестве.

№ 1- не обнаружено

№ 2- не обнаружено

№ 3- не обнаружено

№4- не обнаружено

Определение гумуса в почве. (Приложение№4 таб 4)

Результаты

Проба №1 –среднегумусная, среднеплодородная;

Проба №2- среднегумусная, среднеплодородная;

Проба №3- среднегумусная, среднеплодородная;

Проба №4- среднегумусная, среднеплодородная.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: