double arrow

Виды напряженного состояния в точке

В любой точки деформированного твердого тела всегда можно выделить элементарный параллелепипед, ориентированный в пространстве таким образом, что по его граням будут возникать только нормальные напряжения.

В зависимости от того, испытывает параллелепипед «растяжение» («сжатие») в одном, в двух или в трех направлениях (рис. 6.2), различают виды напряженного состояния:

линейное (одноосное) напряженное состояние,

плоское (двухосное) напряженное состояние,

объемное (трехосное) напряженное состояние.

С линейным напряженным состоянием мы уже сталкивались при изучении центрального растяжения (сжатия).

В задачах сопромата часто встречается плоское напряженное состояние. Его характерным признаком является полное отсутствие нормальных и касательных напряжений на двух параллельных гранях параллелепипеда.

Правила знаков для нормальных и касательных напряжений при плоском напряженном состоянии

 

Установим правила знаков касательных и нормальных напряжений.

Правило знаков нормальных напряжений:

нормальное напряжение, соответствующее растяжению, считается положительным, а сжатию – отрицательным.

Правило знаков для касательных напряжений.

Касательное напряжение положительно, если одновременно выполняются (или одновременно не выполняются) два условия правила знаков касательных напряжений:

условие 1: направление напряжения совпадает с положительным направлением соответствующей координатной оси;

условие 2: внешняя нормаль к площадке, на которой возникает напряженное состояние, направлена в ту же сторону, что и другая соответствующая координатная ось.

Например, все напряжения, возникающие по граням элементарного параллелепипеда (рис. 6.3), показаны положительными. Поскольку, как уже отмечалось в правиле знаков для касательных напряжений, во всех точках элементарного параллелепипеда напряженное состояние однородно, если одноименные напряжения, возникающие на параллельных гранях элемента, численно равны друг другу.

При анализе напряженного состояния в некоторой точке тела нормальные и касательные напряжения , возникающие по граням элементарного параллелепипеда, считаются заданными.


Закон парности касательных напряжений

 

Элементарный параллелепипед должен находиться в равновесии (он не должен вращаться вокруг оси x, проходящей через точку К) (см. рис. 6.3), поэтому суммарный момент всех сил, возникающих по граням относительно этой оси должен быть равным нулю:

В формуле условии равновесия параллельного параллелепипеда в скобки заключены соответствующие силы, выраженные через касательные и нормальные напряжения, а их плечи указаны за скобками. После элементарных упрощений этого выражения, получим закон парности касательных напряжений:

Формулировка закона парности касательных напряжений: касательные напряжения на любых двух взаимно перпендикулярных площадках, направленные по перпендикуляру к линии пересечения площадок, равны по величине, притом касательные напряжения либо сходятся к линии пересечения площадок, либо расходятся от нее.

Главные напряжения и главные площадки

 

Главные площадки – это площадки, проходящие через исследуемую точку, на которых Касательные напряжения отсутствуют.

Главные напряжения – это возникающие на главных площадках нормальные напряжения

В общем случае нагружения (при объемном напряженном состоянии) среди множества площадок, проходящих через некоторую точку тела, всегда можно найти три взаимно перпендикулярные главные площадки. В окрестности любой точки деформированного твердого тела всегда можно выделить элементарный параллелепипед, ориентированный в пространстве таким образом, что по его граням будут возникать только нормальные (главные) напряжения (см. рис. 6.2).


Главные напряжения обозначаются . Индексы расставляются после вычисления главных напряжений. Должно выполняться неравенство:

– наибольшее, а – наименьшее нормальное напряжение в исследуемой точке тела.

В частном случае нагружения может получиться так, что все три главных напряжения в исследуемой точке тела равны между собой. Тогда любая площадка, проведенная через эту точку, является главной площадкой. По значениям главного напряжения дается оценка условиям прочности.

 

 

Растяжение и сжатие – это наиболее простые и часто встречающиеся виды деформации. На растяжение и сжатие работают многие элементы конструкций: стержни ферм, колонны, канаты лебедок, штоки паровых машин, лонжероны крыла самолетов. Растяжение и сжатие – это наиболее простые виды деформации, поэтому изучение курса сопромата начинается именно с изучения этих видов деформации.



Эпюра продольных сил

Если продольные силы, возникающие в различных поперечных сечениях стержня, неодинаковы, закон их изменения по длине стержня представляется в виде графика N(z), называемого эпюрой продольных сил. Эпюра продольных сил необходима для оценки прочности стержня и строится для того, чтобы найти опасное сечение (поперечное сечение, в котором продольная сила принимает наибольшее значение ).

для построении эпюры N используется метод сечений. Продемонстрируем его применение на примере (рис. 2.1).

Определим продольную силу N, возникающую в намеченном нами поперечном сечении стержня.

Разрежем стержень в этом месте и мысленно отбросим нижнюю его часть (рис. 2.1, а). Далее мы должны заменить действие отброшенной части на верхнюю часть стержня внутренней продольной силой N.

Для удобства вычисления ее значения закроем рассматриваемую нами верхнюю часть стержня листком бумаги. Напомним, что продольное усилие N, возникающее в поперечном сечении, можно определить как алгебраическую сумму всех продольных сил, действующих на отброшенную часть стержня, то есть на ту часть стержня, которую мы видим.

При этом применяем следующее правило знаков: силы, вызывающие растяжение оставленной части стержня (закрытой нами листком бумаги) входят в упомянутую алгебраическую сумму со знаком «плюс», а силы, вызывающие сжатие – со знаком «минус».

Итак, для определения продольной силы N в намеченном нами поперечном сечении необходимо просто сложить все внешние силы, которые мы видим. Так как сила кН растягивает верхнюю часть, а сила кН ее сжимает, то кН.

Знак «минус» означает, что в этом сечении стержень испытывает сжатие.

Можно найти опорную реакцию R (рис. 2.1, б) и составить уравнение равновесия для всего стержня, чтобы проверить результат:

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: