Способы преобразования энергии и принцип работы солнечных батарей

Фамилия Имя Отчество

Михеев Егор Олегович

 

ТЕМА УЧЕБНОГО ИССЛЕДОВАНИ

Альтернативные источники электроэнергии

 

ОУДП.14 Физика

Электромонтажник по силовым сетям и электрооборудованию

 

 

ИНДИВИДУАЛЬНЫЙ ПРОЕКТ

 

 

Сдан на проверку Подпись

 

Общее количество первичных баллов ____

 

Руководитель: ______________ В.Г.Шляхто

 

 

Брянск

2020

 

Введение. 3

Глава 1. 4

1.1. Что такое альтернативные источники энергии?. 4

1.2. Солнечная энергетика. 5

1.3. Ветроэнергетика. 11

1.4. Геотермальная энергетика. 17

1.5. Энергия биомассы.. 22

Глава 2. 29

2.1. Грозовая энергетика. 29

2.2. Инфракрасное излучение как источник энергии. 31

Общее заключение. 32

Список литературы. 33

Приложение. 35

 

 

 

 

Введение

Актуальность проблемы:

Альтернативная энергетика — совокупность перспективных способов получения, передачи и использования энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при, как правило, низком риске причинения вреда окружающей среде.

Для того, чтобы человечество существовало и стремительно развивалось, необходимо постоянно улучшать способы получения энергии. Поиск новых источников энергии и развитие альтернативных способов получения энергии – это основная приоритетная задача человечества в новом тысячелетии.

Энергетика – основа любых процессов во всех отраслях народного хозяйства, главное условие создания материальных благ и повышения уровня жизни людей. Энергетика сегодня является важнейшей движущей силой мирового экономического прогресса, и от её состояния напрямую зависит благополучие миллиардов жителей планеты. Неуклонный рост численности людей приводит к увеличению потребления энергии. И, если не развивать альтернативную энергетику, то это может привести к энергетическому кризису, так как с каждым днем все больше истощаются запасы природных ресурсов (уголь, газ, нефть), необходимых для работы традиционной энергетики.

В результате деятельности традиционной энергетики происходит отрицательное воздействие на атмосферу, литосферу и гидросферу, что увеличивает вероятность возникновения экологической катастрофы. Например, при сгорании органического топлива происходит образования различных вредных продуктов, загрязняющих окружающую среду, а при чрезмерном использовании воды постоянно меняется уровень воды, что может привести к катастрофическому наводнению или к засухе.

Цель: изучить альтернативные, нетрадиционные способы получения энергии и рассказать о них.

Задачи:

1) Найти подходящую информацию и проанализировать её.

2) Выяснить, что такое альтернативные источники энергии.

3) Узнать, какие существуют способы получения энергии.

4) Рассказать об истории их развития.

5) Изучить принципы получения и применения энергии.

6) Выявить преимущества и недостатки каждого способа с разных точек зрения:

А) С экологической

Б) С экономической

В) С технической

7) Сделать вывод о том, какой видынаиболее выгодны и приемлемы для человека.

8)Предложить необычные способы получения энергии.

Объект исследования: альтернативные источники энергии.

Предмет исследования: актуальность альтернативной энергетики.

Гипотеза: Возможно, что Альтернативные источники энергии действительно являются наиболее выгодной заменой традиционным источникам.

Глава 1

Что такое альтернативные источники энергии?

Альтернативные источники энергии – это приборы, способы, устройства, или сооружения, позволяющие получать электрическую энергию (или другой требуемый вид энергии) и заменяющие собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле.

    К таким источникам энергии относят: энергию Солнца, ветра, тепла Земли, энергию морей и океана, биомассу, новые виды жидкого и газообразного топлива, представленные синтетической нефтью на основе угля, органической составляющей горючих сланцев и битуминозных пород, а также некоторые виды топливных спиртов и водород.

    Многие из нетрадиционных источников энергии являются сложными энергоресурсами, компоненты которых позволяют получать и нетопливную продукцию, широко применяемую в химии, строительной индустрии, сельском хозяйстве, металлургии и т.д.

    Основное преимущество альтернативных источников энергии является неисчерпаемость и экологическая чистота. Их использование не изменяет экологический баланс планеты. Такие источники энергии играют значительную роль в решении трех глобальных проблем, стоящих перед человечеством: энергетики, экологии, продовольствия.

 

Солнечная энергетика

Солнце как источник энергии

Солнце является основным источником всех видов энергии, которыми человек имеет в своем распоряжении. Этот резервуар неисчерпаем. Достаточно сказать, что в течение 1,1*109 лет Солнце израсходует всего лишь около 2% аккумулированной в нём энергии.

    Наша Земля, находясь в среднем на расстоянии 149 млн.км от Солнца, не получает и половины одной миллионной доли потока энергии излучаемой Солнцем. Кроме того, в среднем около 40% этой падающей энергии отражается на границе земной атмосферы обратно в межзвездное пространство. Тем не менее общее количество лучистой энергии, достигающее поверхности Земли в области суши, составляет за год 9,5*1017 кВт/ч. Это огромное количество энергии, непрерывно приходящее на поверхность Земли от Солнца в течение года, в 32 000 раз больше той энергии, которая поступает за это время в мировую энергетическую систему от разных источников энергии, таких, как минеральное топливо, гидроэнергия и пр.

 

История развития.

Пращурами, отцами солнечной энергетики на нашей планете следует считать французского физика Александра Эдмона Беккереля, электрика-изобретателя из Нью-Йорка Чарльза Фриттса, а также знаменитого Альберта Эйнштейна, обладателя Нобелевской премии. Первый, ещё в 1839 году заметил фотоэффект, представляющий собой излучение электронов под воздействием солнечного света. Второй, 44 года спустя, создал первый солнечный модуль — покрытый тонким слоем золота селен. КПД этой первой солнечной батареи был весьма низок — около 1%. Но это был первый шаг. В 1905 году Эйнштейн получает Нобелевскую премию как раз за доработку идей Беккереля. В 30-х годах прошлого века отечественные учёные под руководством академика А.Ф. Иоффе создали первые солнечные сернисто-таллиевые элементы. КПД их тоже был низок. Однако работы над солнечными батареями продолжились. В начале 50-х годов ХХ века, в США, в лаборатории компании Bell Telephone, Джеральд Пирсон со товарищи установил, что кремний с определённым покрытием заметно более чувствителен к солнечному свету, чем селен. В итоге была создана солнечная ячейка-батарея с КПД около 6% — началась эра развития солнечных батарей.

В 1957 году в СССР был запущен первый искусственный спутник с применением фотогальванических элементов, а в 1958 г. США произвели запуск искусственного спутника Explorer-1 с солнечными панелями. С 1958 года кремниевые солнечные батареи стали основным источником энергии для космических кораблей и орбитальных станций. Во время нефтяного кризиса 1973-74 гг. сразу несколько стран запустили программы по использованию фотоэлементов, что привело к установке и опробованию свыше 3100 фотоэлектрических систем только в Соединенных Штатах. Многие из них до сих пор находятся в эксплуатации.

    Очередной всплеск интереса к солнечной энергетике пришелся на нефтяной кризис 1973–1974 годов, когда многие страны лихорадочно бросились искать альтернативные источники энергии. Только в США за это время было установлено более 3000 фотоэлектрических систем. Производились солнечные часы и калькуляторы, строились дома, использующие исключительно энергию солнца.

Первая попытка производства солнечной энергии в промышленных масштабах была предпринята в США, где в 1981 году заработала гелиотермальная электростанция в пустыне Мохаве. Ее площадь составляла 83 тысячи квадратных метров, а мощность – 10МВт. Удачный опыт ее использования способствовал дальнейшему развитию солнечной энергетики

 Огромный вклад в развитие отрасли внесла группа советских ученых под руководством Жореса Алфёрова. В 1970 году она представила первую высокоэффективную солнечную батарею с применением галлия и мышьяка. Воспользовавшись этой идеей, Applied Solar Energy Corporation (ASEC) в 1988 году выпустила батарею с КПД 17%. Большая часть современных батарей, к примеру, имеет коэффициент полезного действия около 20%. Правда, и это уже не предел. В 2011 году компания Boeing наладила выпуск солнечных панелей с КПД 39,2%.

Пионером отечественной солнечной энергетики стала СЭС. (Солнечная электростанция) Она появилась близ крымского города Щелкино, запущена в эксплуатацию в 1985 году. Работала станция по гелиотермальному принципу, а ее мощность составляла 5 МВт. Планировалось, что СЭС станет резервным источником электричества для Крымской АЭС. Впрочем, последняя так и не была достроена.

    В последнее время солнечная энергетика развивается семимильными шагами. Если в 2000 году суммарная мощность фотоэлектрических установок в мире оценивалась в 1 ГВт, то в 2013-м она составляла уже 142 ГВт, увеличившись за один только год на 39 ГВт.

Способы преобразования энергии и принцип работы солнечных батарей.

Существует два основных способа преобразования солнечной энергии:

· фототермический;

· фотоэлектрический.

В первом, простейшем, фототермическом, теплоноситель (чаще всего вода) нагревается в солнечном коллекторе (системе светопоглощающих труб) до высокой температуры и используется для отопления помещений. Коллектор устанавливают на крыше здания так, чтобы его освещенность в течение дня была наибольшей. Часть тепловой энергии аккумулируется: краткосрочно (на несколько дней) – тепловыми аккумуляторами, долгосрочно (на зимний период) – химическими.

Солнечный коллектор простой конструкции площадью 1м2 за день может нагреть 50-70 л воды до температуры 80-90 градусов по Цельсию. Использование солнечных коллекторов позволяет снабжать водой многие дома в южных районах России.

Во втором способе, фотоэлектрическом, используется прямое преобразование солнечного излучения в электрический ток с помощью полупроводниковых фотоэлементов – солнечных батарей.Этот способ наиболее перспективный для будущего.

Солнечные батареи (или фотоэлектрические модули) производят многих типов и размеров. Подразделяют на кремниевые и пленочные. Наиболее распространенные – это кремниевые фотоэлектрические модули мощностью 40-160 Вт при ярком солнце, так как в земной коре находится много кремния, что объясняет дешевизну и высокую производительность.

Панель преобразователя солнечных батарей состоит из двух тонких пластин из чистого кремния, сложенных вместе. (см. рис. 1 в приложении) На одну пластину наносят бор, а на вторую фосфор. В слоях, покрытых фосфором, возникают свободные электроны, а в покрытых бором – отсутствующие электроны. Под влиянием солнечного света электроны начинают движение частиц, и между ними возникает электрический ток. Чтобы снять ток с пластин их пропаивают тонкими полосками специально обработанной меди. Одной кремниевой пластины хватит для зарядки маленького фонарика. Соответственно, чем больше площадь панели, тем больше энергии она вырабатывает.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: