double arrow

Группоиды, полугруппы, группы

  • Группоид — множество с одной бинарной операцией , обычно называемой умножением.
  • Правая квазигруппа — группоид, в котором возможно правое деление, то есть уравнение имеет единственное решение для любых и .
  • Квазигруппа — одновременно правая и левая квазигруппы.
  • Лупа — квазигруппа с единичным элементом , таким, что .
  • Полугруппа — группоид, в котором умножение ассоциативно: .
  • Моноид — полугруппа с единичным элементом.
  • Группа — моноид, в котором для каждого элемента a группы можно определить обратный элемент a −1, такой, что .
  • Абелева группа — группа, в которой операция коммутативна, то есть, . Операцию в абелевой группе часто называют сложением ('+').

Кольца

  • Полукольцо — похоже на кольцо, но без обратимости сложения.
  • Почти-кольцо — также обобщение кольца, отличающееся от обычного кольца отсутствием требования коммутативности сложения и отсутствием требования дистрибутивности умножения по сложению (левой или правой)
  • Кольцо — структура с двумя бинарными операциями: абелева группа по сложению, моноид по умножению, выполняется закон дистрибутивности: .
  • Коммутативное кольцо — кольцо с коммутативным умножением.
  • Целостное кольцо — кольцо, в котором произведение двух ненулевых элементов не равно нулю.
  • Тело — кольцо, в котором ненулевые элементы образуют группу по умножению.
  • Поле — коммутативное кольцо, являющееся телом.

Алгебры

  • Алгебра (линейная) — пространство с билинейной дистрибутивной операцией умножения, иначе говоря, кольцо с согласованной структурой пространства
  • Ассоциативная алгебра — алгебра с ассоциативным умножением
  • Алгебра термов
  • Коммутативная алгебра
  • Градуированная алгебра
  • Алгебра Ли — алгебра с антикоммутативным умножением (обычно обозначаемым ), удовлетворяющим тождеству Якоби
  • Алгебра Лейбница — алгебра с умножением (обычно обозначаемым ), удовлетворяющим тождеству Якоби
  • Алгебра Йордана — коммутативная алгебра с тождеством слабой ассоциативности:
  • Алгебра некоммутативная йорданова — некоммутативная алгебра с тождеством слабой ассоциативности: и тождеством эластичности:
  • Альтернативная алгебра — алгебра с тождествами
  • Алгебра Мальцева — антикоммутативная алгебра с тождеством:

  • Коммутантно-ассоциативная алгебра
  • Алгебра над операдой — один из наиболее общих видов алгебраических систем. Здесь сама операда играет роль сигнатуры алгебры.

Решётки

  • Решётка — структура с двумя коммутативными, ассоциативными, идемпотентными операциями, удовлетворяющими закону поглощения.
  • Булева алгебра.

МНОГООБРАЗИЕ

Линейным многообразием в линейном пространстве называется подмножество этого пространства вида

для каких-то фиксированных подпространства и вектора , то есть подмножество, полученное сдвигом каждого элемента из на вектор . Обозначение:

Если и , то тогда и только тогда, когда и .

В частности, является линейным подпространством тогда и только тогда, когда (т.е. содержит нулевой элемент). В этом случае .

Если — гильбертово пространство, а — его замкнутое подпространство, то можно выбрать вектор в определении () ортогональным подпространству . Такое представление , единственно.

Пересечение линейных многообразий всегда является линейным многообразием.

Размерность линейного многообразия — это размерность линейного подпространства : Для линейных многообразий в -мерном векторном пространстве или , или

АЛГЕБРАИЧЕСКИХ СИСТЕМ МНОГООБРАЗИЕ

алгебраических систем класс фиксированной сигнатуры и, аксиоматизируемый при помощи тождеств, т. е. формул вида

где - к.-л. предикатный символ из или знак равенства, а - термы сигнатуры Q от предметных переменных А. с. м. наз. иначе э к, вациональными классами, иногда примитивными классами. Многообразие сигнатуры может быть определено также (теорема Биркгофа) как непустой класс -систем, замкнутый относительно подсистем, гомоморфных образов и декартовых произведений.

Пересечение всех многообразий сигнатуры , содержащих данный (не обязательно абстрактный) класс -систем, наз. эквациональным замыканием класса (или многообразием, порожденным классом > и обозначается . В частности, если класс состоит из одной -системы , то его эквацп-ональное замыкание обозначают . Если система конечна, то все конечно порожденные системы в многообразии также конечны [1], [2].

Пусть - нек-рый класс -систем, - класс подсистем систем из - класс гомоморфных образов систем из - класс изоморфных копий декартовых произведений систем пз . Для произвольного непустого класса -систем имеет место соотношение (см. [1], [2]):

РЕШЁТКА

Решётка (ранее использовался термин структура) — частично упорядоченное множество, в котором каждое двухэлементное подмножество имеет как точную верхнюю (sup), так и точную нижнюю (inf) грани. Отсюда вытекает существование этих граней для любых непустых конечных подмножеств.

Примеры

  1. множество всех подмножеств данного множества, упорядоченное по включению; например: ;
  2. всякое линейно упорядоченное множество; причём если , то ;
  3. множество всех подпространств векторного пространства, упорядоченных по включению, где — пересечение, а — сумма соответствующих подпространств;
  4. множество всех неотрицательных целых чисел, упорядоченных по делимости: , если для некоторого . Здесь — наименьшее общее кратное, а — наибольший общий делитель данных чисел;
  5. вещественные функции, определённые на отрезке [0, 1], упорядоченные условием , если для всех . Здесь

, где .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: