Расчет цепей постоянного и переменного тока

Целью расчёта электрической цепи постоянного тока является определение некоторых параметров на основе исходных данных, из условия задачи. На практике используют несколько методов расчёта простых цепей. Один из них базируется на применении эквивалентных преобразований, позволяющих упростить цепь. Под эквивалентными преобразованиями в электрической цепи подразумевается замена одних элементов другими таким образом, чтобы электромагнитные процессы в ней не изменились, а схема упрощалась.

Одним из видов таких преобразований является замена нескольких потребителей, включённых последовательно или параллельно, одним эквивалентным (). Несколько последовательно соединённых потребителей можно заменить одним, причём его эквивалентное сопротивление равно сумме сопротивлений потребителей, включённых последовательно. Для n потребителей можно записать:

rэ= r1 + r2 +…+ r3                                                                                                                                     (1.6)

где r1, r2,..., rn – сопротивления каждого из n потребителей.

Данные операции позволяют упростить цепь. Применив их несколько раз, приходят к виду с одним источником и одним эквивалентным потребителем энергии. Далее, применяя законы Ома и Кирхгофа, рассчитывают токи и напряжения на участках цепи

Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа. Законы Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Первый закон Кирхгофа вытекает из закона сохранения заряда.

Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю:                                                                                                     (1.7)

Например, для узла электрической цепи (рис. 1.9) уравнение по первому закону Кирхгофа можно записать в виде: I1 – I2 + I3 – I4 + I5 = 0


Рис. 1.9. Узел электрической цепи

Расчет сложных цепей постоянного тока предусматривает определение некоторых электрических параметров (в первую очередь токов и напряжений на элементах) на основе исходных величин, заданных в условии задачи. На практике используются несколько методов расчёта таких цепей. Для определения токов ветвей можно использовать: метод, базирующийся на основании непосредственного применения законов Кирхгофа, метод контурных токов, метод узловых напряжений.

Любой ток, изменяющийся по величине, является переменным. Но на практике под переменным током понимают такой ток, закон изменения которого во времени есть синусоидальная функция (рис. 1.3).

Математическое выражение для синусоидального тока можно записать в виде:

                                                         (1.8)

где, i - мгновенное значение тока, показывающее величину тока в конкретный момент времени, Im - амплитудное (максимальное) значение тока, выражение в скобках есть фаза, которая определяет значение тока в момент времени t, f - частота переменного тока, это величина, обратная периоду изменения синусоидальной величины Т, ω - угловая частота, ω = 2πf = 2π / T, α - начальная фаза, показывает значение фазы в момент времени t = 0.

Аналогичное выражение можно записать и для синусоидального переменного напряжения:

                                                                 (1.9)

Мгновенные значения силы тока и напряжения обозначают латинскими буквами i, u, а максимальные (амплитудные) значения – прописными печатными латинскими буквами I, U с индексом m.

Для измерения величины переменного тока чаще всего используют действующее (эффективное) значение, которое численно равно такому постоянному току, который за период переменного выделяет в нагрузке такое же количество тепла, что и переменный ток.

В цепях переменного тока изменение во времени питающего напряжения влечёт за собой изменение тока, а также магнитного и электрического полей, связанных с цепью. Результатом этих изменений является возникновение ЭДС самоиндукции и взаимоиндукции в цепях с катушками индуктивности, а в цепях с конденсаторами появляются зарядные и разрядные токи, которые создают сдвиг по фазе между напряжениями и токами в таких цепях.

Отмеченные физические процессы учитывают введением реактивных сопротивлений, в которых, в отличие от активных, не происходит превращение электрической энергии в другие виды энергии. Наличие тока в реактивном элементе объясняется периодическим обменом энергией между таким элементом и сетью. Все это усложняет расчёт цепей переменного тока, так как приходится определять не только величину тока, но и его угол сдвига по отношению к напряжению.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: