Ветеринарная селекция

 

Благодаря целенаправленной селекции, проводившейся в последние десятилетия, значительно повысился генетический потенциал животных по многим хозяйственно полезным признакам. Вместе с тем все чаще возникают проблемы, связанные с плодовитою животных и резистентностью их к болезням опыт показывает, что эти проблемы невозможно решить только за счет улучшения кормления, технологии содержания или средствами ветеринарной терапии. На практике фармацевтические средства и препараты, повышающие иммунитет, очень часто оказываются недостаточными для лечения и профилактики болезней.

Результаты исследований советских и зарубежных ученых подтверждают немаловажное значение наследственности в проявлении резистентности или восприимчивости животных к определенным болезням, устойчивости к неблагоприятным факторам внешней среды. Известный ветеринарный генетик Ф. Б. Хатт, подчеркивая значение генетической профилактики болезней, отмечал, что внутри вида находятся индивидуумы, способные жить с возбудителями болезни, в то время как другие заболевают. Он считал, что в результате накопления благоприятно действующих генов резистентных индивидуумов можно создать резистентные к болезням линии и породы.

В настоящее время используются генетические методы для юиска и анализа причин, обусловливающих снижение уровня воспроизводительной функции и жизнеспособности, распространение аномалий, а также ведется разработка научно обоснованной системы их профилактики.

Установлено, что многие формы патологий животных имеют генетическую основу и связаны с мутациями и рекомбинациями наследственного материала — генов и хромосом.

Роль мутаций и рекомбинаций генов в возникновении патологии у животных. Мутации, представляющие собой стойкие изменения в структуре ДНК, хромосом и количественном составе кариотипа, постоянно и с определенной частотой возникают в популяциях животных.

 

Фенотипически мутации нередко проявляются в формах врожденных уродств (аномалий), в смертности, снижении жизнеспособности и устойчивости к болезням, нарушении воспроизводительной функции. В популяциях сельскохозяйственных животных в процессе длительного их существования накоплен определенный груз вредных рецессивных мутаций и аберраций хромосом. Для профилактики распространения вредных мутаций необходима прежде всего организация учета всех форм патологии животных.

Генетический контроль (мониторинг) вредных мутаций должен включать тщательный клинический анализ болезней и уродств, экспертизу происхождения аномальных животных, выяснение роли наследственности в их этиологии. Значение проблемы генетического мониторинга в современном животноводстве связано с рядом обстоятельств. Так, в связи с использованием искусственного осеменения постоянно сокращается число производителей; следовательно, степень влияния каждого из них на генофонд стада, распространение наследственных дефектов значительно увеличилась. Поэтому особо важное значение при организации рупномасштабной селекции приобрела оценка генотипов быков, хряков, баранов, используемых в интенсивном воспроизводстве. Контроль воспроизводительных способностей производителей общепринятыми методами по качеству потомства не дает полных сведений о возможности генетического влияния их на оплодотво-.ряемость, эмбриональную смертность, рождение аномального и Нежизнеспособного, подверженного заболеваниям плода. Ситуация осложняется тем, что большинство аномалий и уродств — го рецессивно наследуемые генные мутации, фенотипически проявляющиеся только в гомозиготном состоянии. Наследуемые Хромосомные аномалии фенотипически проявляются лишь у взрослых дочерей производителей в виде гибели эмбрионов. [ Для проверки производителей на носительство скрытых генетических дефектов и элиминации их из воспроизводства необходимы регистрация всех случаев уродств и аномалий, контроль состояния структуры и функции хромосом.

Организация мониторинга в животноводстве позволяет контролировать уровни мутагенов в окружающей среде, их влияние, на хромосомный аппарат, рост, развитие и продуктивность животных, осуществлять профилактику распространения генетической патологии. Г Известно, что генетический груз популяций животных представлен широким спектром не только генных мутаций, но и аберраций хромосом, которые подразделяются на количественные изменения в кариотипе — анеуплоидию (полиплоидия, гипер-плоидия, гипоплондия) и структурные перестройки (транслокация хромосом, инверсии, делеции, нехватки, дупликации и др.). Избыток или недостаток хромосом у индивидуума, как правило, приводит к его гибели еще в эмбриональную стадию развития. Исключения составляют носители моносомни, трисомин и некоторых других вариантованеуплоидии по половым хромосомам, которые выживают, но являются бесплодными.

Живые носители структурных перестроек хромосом не имеют выраженных фенотипических отклонений. Однако в гаметогенезе у них формируются половые клетки с несбалансированным набором хромосом, дающие начало нежизнеспособным эмбрионам, что является причиной снижения уровня воспроизводительной, функции. Эти аберрации, являясь сбалансированной частью хромосомных мутаций, передаются по наследству.

Особенности распространения генетических аномалий животных. В современных условиях разведения животных, когда генотип производителя за короткое время может быть" репродуцирован тысячами его потомков, ущерб от рождения аномального приплода, снижения его плодовитости и жизнеспособности может быть больше улучшающего эффекта по продуктивности, если производитель является носителем вредных генов или аберраций хромосом.

При использовании в разведении быков, содержащих в кариотипе вредные гены, их самих, а также их сыновей и внуков частота генетической аномалии быстро возрастает. Например, в костромской породе интенсивно использовали быка Бурхана 6083, в потомстве которого было зарегистрировано несколько типов уродства (укорочение нижней челюсти, мопсовидность и пучеглазие, водянка, слепота, уродства конечностей и др)-В результате, если частота этих аномалий в приплоде Бурхана составила 4,87 %, то у его внука быка Жетона 3501 уже 17,3 % потомков имели уродства головы.

Анализ 14 линий костромского скота (Жигачев А. И., 1986) выявил большое число уродств в линии Ладка. Причиной такого явления обычно служит насыщение родственной группы животных (линии) рецессивными мутациями при отсутствии браковки гетерозиготных по вредным генам животных.

Влияние дрейфа генов, усиление концентрации вредного аллеля возрастают при повышении нагрузки на одного производителя. Скорость протекания генетико-автоматических процессов (дрейфа) зависит от эффективной численности популяции. Для определения последней используют формулу Ate = 4Nf Nm/Nf + Nm, где Ne — эффективная численность популяции; Nf — количество самок; tfm — количество самцов, участвующих в размножении.

Зависимость интенсивности генетико-автоматических процессов (дрейфа) от размера популяции определяется по формуле К = 72/Ve, где К — доля, на которую изменяется концентрация аллеля.

Так, если на поголовье 1000 маток будут использоваться 5 быков, величина К составит 2,0 %, а при использовании одного Ебыка К будет равна 10%. Особенно резко может повыситься частота мутантного аллеля в популяции, если при разведении линии генотип гетерозиготного родоначальника будет репродуцироваться с применением инбридинга, как это имело место в линии Ладка и его продолжателя Бурхана. В пяти поколениях этой линии зарегистрировано 117 телят-уродов. В большинстве случаев родословные отцов и матерей замыкались на трех предков — быков Бурхана, его отца Ладка и деда Салата. В ряде случаев инбридинг был комплексным — одновременно на указанных производи гелей или усиливающимся, что повышало вероятность перехода мутантных генов в гомозиготное состояние.

Следует иметь в виду, что при интенсивном использовании ограниченного контингента производителей в товарных хозяйствах генетическое разнообразие популяции суживается даже при своевременной ротации линий. Такое положение может привести к сочетанию родственных по генотипам (гетерозиготных носителей вредных генов) производителей и маток. С другой стороны, интенсивное кроссирование линий в племенных хозяйствах неизбежно будет приводить к стихийному родственному спариванию в товарных хозяйствах и массовому проявлению инбредной депрессии, в том числе повышению частоты уродств и аномалий в популяциях.

Инбредная депрессия может возрасти в результате миграции. Под миграцией в животноводстве понимают импорт производителей, маток или гамет (спермиев, а также яйцеклеток и эмбрионов), закупки племенных животных из других зон страны. При использовании завезенных животных в местную популяцию могут быть введены не только желательные гены, повышающие продуктивность, но и аллели, обусловливающие летальные и полулетальые аномалии.

Сдвиги концентраций рецессивного аллеля q при Миграциях определяются по формуле q — —т (q — 17m), где т — Величина обмена генами, a qm — средняя концентрация аллеля по ей системе популяций, между которыми идет обмен генами, "Ли в той определенной популяции, откуда поступают животные Дубинин Н. П., 1985). Из формулы видно, что величина сдвига концентраций рецессивного аллеля зависит от частоты рецессивного аллеля в исходной популяции, откуда мигрируют особи, и частоты миграции.

Случаев распространения генетических аномалий вследствие миграций известно немало. Например, в ФРГ в результате интенсивного использования на местном поголовье черно-пестрого скота отдельных быков голштинской породы, импортированных из США, резко возросла частота пупочных грыж у телят. Эту же аномалию наблюдали в потомстве двух быков голландской породы, закупленных в ЧССР из Нидерландов.

Таким образом, чтобы не допустить массового распространения наследственной патологии, необходимы проверка генотипов производителей на носительство вредных генов и исключение из интенсивного использования носителей мутаций.

Профилактика распространения летальных и полулетальных аномалий у сельскохозяйственных животных. Летальные и полулетальные аномалии в основном связаны с переходом в гомозиготное состояние мутантных рецессивных генов. Это означает, что родители аномальных животных являются гетерозиготными носителями данных мутаций. Для того чтобы вредные рецессивные мутации не распространялись в конкретном стаде или породе, необходима организация генетического контроля (мониторинга) за проявлением патологии у животных.

Прежде всего, в каждом стаде должна быть налажена система учета рождения уродливого и аномального приплода. На основании этого учета проводится генетический анализ для установления роли наследственности в возникновении аномалий. Такой анализ должен подкрепляться сведениями из литературы относительно этиологии данной патологии.

Если в популяции животных появляется врожденная аномалия и установлено, что она контролируется аутосомным рецессивным геном, то родителей, от которых получен аномальный потомок, и других фенотипически нормальных их потомков не оставляют для воспроизводства. Это вызвано тем, что родители являются гетерозиготными носителями рецессивной мутации и половина их нормальных потомков имеет такой же ген в гетерозиготном состоянии. Особенно недопустимо использование гетерозиготных по вредным рецессивным генам производителей в племенных хозяйствах.

Если аномалии возникают у высокопродуктивных родителей в племенных стадах, то мужских потомков целесообразно проверять на гетерозиготное носительство путем родственных спариваний. Для интенсивного использования производителей в последующем отбирают только тех из них, у которых при инбридинге не было аномального приплода. Проверка производителе по качеству потомства должна предусматривать учет не только продуктивности потомства, но и его жизнеспособности.

Влияние генетических факторов на мертворожденность и постнатальную смертность молодняка.

Мертворожденность и гибель молодняка в первые дни после рождения причиняют значительный ущерб животноводству. Подсчитано, что в общем доходе, получаемом от коровы, 10—12 % составляет доход от теленка. Мертвыми рождаются от 1 до 10 % телят. Причины мертворождений Могут быть различными. Значительную долю (около 20 %) перинатальной смертности приплода крупного рогатого скота составляют трудные отелы.

На частоту мертворожденность оказывают также влияние генетические и средовые факторы, порода и методы разведения родителей.

Установлено влияние отцов на частоту мертворождений и смертности телят после рождения. Перинатальная смертность может быть связана с применением инбридинга. Например, в плем-заводах «Сычевка», «Никольский» (сычевская порода) и «Пролетарий» (костромская порода) соответственно 81,4; 80,0 и 85,8 % мертвых телят родились в результате родственного спаривания. В этих хозяйствах был выделен ряд семейств и пар мать—дочь, где при родственном подборе рождались нежизнеспособные телята, а отдельные коровы неоднократно давали мертворожденный приплод. У некоторых коров после отела нежизнеспособным теленком нарушалась воспроизводительная функция. Они длительное время не приносили приплода, что приводило к их выбраковке. Другие коровы выбывали сразу после отела мертвым теленком.

При проверке производителей по качеству потомства необходимо вести строгий учет заболеваемости и смертности, а также вынужденного убоя молодняка. Быков, имеющих преимущество по ряду селекционируемых признаков, но характеризующихся повышенной смертностью потомков (более 5 %), следует использовать очень ограниченно.

Для определения генетических и средовых причин смертности приплода в товарных хозяйствах необходимо одновременно использовать сперму не одного, а нескольких производителей.

В этом случае достоверно повышенная частота смертности в потомстве определенного быка при прочих равных условиях Должна рассматриваться как проявление генотипа данного производителя.

 

20. Закон Червинского - Малигонова

 

Многочисленными исследованиями бесспорно доказано положи­тельное влияние полноценного, обильного кормления на рост и развитие животных.

Н. П. Чирвинский, изучая массу и линейные промеры скелета северных короткохвостых овец, постоянно получавших различные по питательности рационы, пришел к выводу, что под влиянием плохого питания в большей мере недоразвиваются те части ске­лета, которые отличаются высокой скоростью роста.

А. А. Малигонов своими работами показал, что выводы Н. П. Чирвинского распространяются на все органы и ткани животных всех видов.

 На основании этих исследований впослед­ствии был сформулирован закон, получивший в зоотехнии назва­ние закона Чирвинского — Малигонова.

Суть закона состоит в следующем: при недокорме в большей степени страдают те органы и ткани, в период интенсивного развития которых орга­низм испытывал недостаток питательных веществ; при обильном питании животного наиболее интенсивно растут и развиваются те органы и ткани, которые в данный период имеют наибольшую скорость роста. Степень недоразвития животных зависит от про­должительности периода скудного питания и степени недокорма. Чем короче неблагоприятный период и незначительней недокорм, тем быстрее и в большей степени наступает компенсация развития. Хотя полной компенсации, как правило, не наступает, молодые животные значительно быстрее, чем взрослые, восстанавливают массу и линейные размеры.

Общебиологический смысл закона о недоразвитии заключается в том, что степень компенсации недоразвития организма, вызван­ного скудным питанием, прямо пропорциональна последующему уровню питания и обратно пропорциональна возрасту животного и продолжительности периода скудного питания. Однако этот закон нельзя понимать абсолютно, так как в период онтогенеза наиболее защищенными оказываются те органы, которые биоло­гически являются наиболее важными для вида. В зависимости от того, в какой период произошла задержка роста, А. А. Мали­гонов выделил три типа недоразвития: эмбрионализм, инфанти­лизм и неотению.

Эмбрионализм возникает в результате недостаточного и неполноценного питания матери во время беременности. Выражается Эмбрионализм в сохранении у взрослого животного сходства с эмбрионом ранней стадии развития: непропорци­онально большая, голова, короткие и тонкие ноги. Эмбрионы имеют плоское удлиненное туловище, слабую оброслость. Они отличаются пониженной резистентностью к болезням.

И н ф а н т и л и з м возникает в результате плохих условий кормления и содержания молодняка после рождения. Такие животные сохраняют пропорции телосложения молодняка даже во взрослом состояний высоконогие (травоядные), с плоской грудью, коротким туловищем: узким задом.

Неотения — преждевременное развитие половых органов у животных, отставших в развитии в эмбриональный период или после рождения. Для животных с признаками неотении характерны высоконогость, плоское укороченное туловище, боль­шая голова, низкая живая масса.

На индивидуальное развитие животных, кроме фактора корм­ления, влияют микроклимат помещений, свет, упражнения и климатические условия. На рост и развитие молодняка и их последующую продуктивность отрицательно влияет резкая смена температуры воздуха днем и ночью, летом и зимой. Слишком высокая и слишком низкая температура окружающего воздуха при повышенной влажности неблагоприятно сказывается на продуктивности животных.

 

В эмбриональном и постэмбриональном развитии животных (онтогенезе) существует несколько периодов, которые отличаются скоростью роста и дифференцировки отдельных тканей, органов, частей и пропорций тела.

 

Эмбриональное развитие. Период эмбрионального развития животных начинается с момента образования оплодотворенной яйцеклетки — зиготы и кончается рождением. Продолжительность эмбриогенеза у животных разных видов следующая, дней:

Продолжительность эмбрионального периода может колебаться в зависимости от породы, условий кормления и содержания маток, упитанности и состояния здоровья.

 

Зародышевый период начинается с образования зиготы, а кончается имплантацией зародыша и формированием плаценты. Продолжительность его у коров 35 дней, у овец — 30 дней, у свиней — 25 дней. В зародышевый период происходят основные формообразовательные процессы: дробление зиготы, образование зародышевых листков, закладка органов и тканей. Формируются особенности и телосложение эмбриона, свойствен­ные виду. В зародышевый период образуется плацента. Масса эмбриона растет медленно.

Предплодный период внутриутробного развития у коров длится 25—26 дней, у овец — 17—18 дней, у свиней — 12—17 дней; он является переходным от зародышевого к плодному, характеризуется высокой напряженностью органогенеза, началом окостенения скелета, формированием мускулатуры. В этот же период происходит половая дифференциация.

Плодный период самый продолжительный. Начинается он с окончания предплодного периода и заканчиваете t рождением животного. У коров он составляет 75 % от обще! продолжительности эмбрионального периода (с 61-го по 284-i день), у овец-у69 % (с 47-го по 150-й день), у свиней—67 % (с 39-го по 114/й день). В плодный период идет интенсивный рост] завершается дифференцировка тканей, органов и систем

В связи с тем, что в зародышевый период развития происходят главным образом качественные преобразования зародыша, необ­ходимо большое внимание уделять биологической полноценности рациона беременных маток. Неполноценное кормление матери в начальный период беременности ведет к абортам, рассасыванию зародышей, рождению слабого потомства.

В плодный период эмбриогенеза, особенно во второй.половине, значительно повышается скорость роста плода, увеличивается его масса, поэтому необходимо повышать уровень питания бере­менных маток.

В зависимости от условий кормления и содержания матери продолжительность зародышевого и плодного периодов может изменяться.

В эмбриогенезе у животных отмечено несколько критических моментов, обусловленных переходом зародыша к новому типу питания, что, вероятно, сопровождается перестройкой белкового синтеза.

Первый критический период наступает на 3—5-й день после овуляции, до выхода зародыша в матку и образования бласто-дермического пузырька. Второй период совпадает с началом импла­нтации зародыша к стенке матки. В это время зародыш питается «маточным молочком» с помощью трофобласта.

Третий период наступает в момент имплантации зародыша к стенке матки и заканчивается образованием плаценты. У круп­ного рогатого скота имплантация начинается на 13—15-й день после овуляции, у овец и свиней — на 11—13-й день, у кроль­чих — на 7—9-й день.

Четвертый критический период наступает в момент оконча­тельного становления плацентарного питания.

 

Постэмбриональное развитие. Постэмбриональный период на­чинается с момента рождения и кончается смертью животного. В постэмбриональном развитии различают 5 периодов: новорожденности, молочный, полового созревания, зрелости и ста­рения.

В период новорожденности происходят адаптация организма к условиям послеутробного развития, становление многих функций; кроветворения, терморегуляции, мочевыделения (вне связи с аллантоисом) и др. Постепенно вырабатываются услов­ные рефлексы, с помощью которых осуществляется связь орга­низма с окружающей средой. Основной пищей в этот период является сначала молозиво, а затем молоко матери. Длительность периода новорожденности 2—3 нед.

 

Молочный период у крупного рогатого скота длится 6 мес, у ягнят — 3,5—4 мес, у жеребят — б—8 мес. Основной пищей является молоко матери, наряду с этим постепенно молод­няк приучается к растительным кормам.

 

В период полового созревания у животных происходит становление половых функций: начинают функциони­ровать половые железы, формируются половые рефлексы, разви­ваются вторичные половые признаки. У самцов и самок начинают выделяться зрелые половые клетки. В этот период завершается формирование типа телосложения особи. У крупного рогатого скота половая зрелость наступает в 6:—9 мес, у овец и коз — в 6—8 мес, у свиней — в 4—5 мес и у кобыл — в 12—18 мес.

Период физиологической зрелости харак­теризуется расцветом всех функций: максимальная продуктив­ность, наивысшая производительная способность. У крупного рогатого скота он наступает в возрасте от 5 до 10 лет, у овец — от 2 до 6 лет, у свиней — от 2 до 5 лет.

 

В период старения происходит угасание всех функ­ций. Снижаются воспроизводительная способность, продуктив­ность; наступают дряхление организма, атрофия тканей, органов.

Наиболее ответственными моментами при выращивании живот­ных являются периоды новорожденности, молочный и полового созревания, когда происходит процесс интенсивного послеутроб­ного развития животного. В это время молодняк особенно ну­ждается в полноценном питании и оптимальных условиях содер­жания.

 

Интерьер

 

Под интерьером понимает совокупность внутренних особенностей, физиологи­ческих биохимических и анатомо-гистологических свойств организма в связи с его конституцией, экстерьером и направле­нием продуктивности. Основоложником учения об интерьере сельскохозяйственных животных был Лискун.

Изучение интерьера дает возможность установить соотноси­тельное развитие в организме органов, тканей и систем и на основе этого познать внутреннюю структуру организма; конституци­ональные особенности на основании изучения физиологических и биохимических свойств организма; течение формообразователь­ных процессов на различных этапах индивидуального развития и факторы, воздействующие на них.

В настоящее время для изучения интерьера используют физио­логический, химический, цитомолекулярный, биохимический, ана­томический, рентгеноскопический, генетический и иммуногенетический методы.

Методы изучения интерьера и клинической диагностики во многом совпадают. Различия состоят в целях исследования. Интерьерные показатели в зоотехнии необходимы для более глубокого познания конституции, для уточнения племенной оценки, отбора, подбора и рационального использования живот­ных. При этом исследуют иммунологические свойства крови, анатомию и гистоструктуру внутренних органов, костяка, молоч­ные, потовые и сальные железы, нуклеиновые кислоты, ферменты и др. Так, при изучении морфологического и гистологического строения молочной железы многими учеными было выявлено, что у высокомолочных коров в вымени на долю железистой ткани приходится 75—80 %, а на долю жировой — 20—25 %.

Установлена положительная корреляция между числом потовых желёз уха и молочностью у коров.

У крупного рогатого скота установлены тесные взаимосвязи между биохимическими показателями крови телок в возрасте 15 дней и последующей их молочной продуктивностью. Коэффи­циенты корреляции с удоем за первую лактацию составили: общего белка — плюс 0,61; общего иода — минус 0,52, белковосвячанного иода — минус 0,58; связь между количеством уксус­ной кислоты с жирномолочностью составляет плюс 0,66. Био­химические показатели крови с успехом используются для раннего прогнозирования удоев молочных коров.

У быстрорастущего молодняка птицы в раннем возрасте отмечается повышенная активность ферментов сыворотки крови, что и обеспечивает ему возможность быстрого роста. Молодняку птицы, отличающемуся минимальными затратами корма на при­рост массы в возрасте 35- 60 дней, свойственна несколько сни­женная амилазная и повышенная трансаминазная активность сыворотки крови. При спаривании кур и петухов, контрастных по уровню биохимических показателей сыворотки крови, осо­бенно если в качестве материнской или отцовской формы исполь­зуются особи со средним уровнем белковосвязанного иода сыво­ротки крови и щелочной фосфатазы, получают потомство с высокой скоростью роста, жизнеспособностью и хорошими мясными каче­ствами (живая масса молодняка повышается на 20 %).

У свиней активность свободного инсулина и уровня сахара в сыворотке крови находится в прямой связи с энергией роста. Коэффициенты корреляции между этими показателями находятся ка уровне 0,41 и 0,66. В последние годы изучение групп крови у животных приобретает особую роль. Группы крови наслед­ственно обусловлены, не меняются в течение жизни животного, поэтому они могут служить генетическими маркерами в решении ряда теоретических и практических вопросов селекции. По группам крови устанавливают происхождение животных, анализи­руют генетическую структуру популяции, определяя в ней уровень гетерозиготности.

На практике наряду с группами крови изучается и полимор­физм белков.

Например, по полиморфным признакам установлены особен­ности структуры популяций у различных видов сельскохозяй­ственных животных и выявлены зависимости между генотипиче- ским состоянием животных и их продуктивными и воспроизводи­тельными показателями.

Таким образом, оценки конституции, экстерьера и интерьера дополняют и уточняют характеристики животных, что, в конечном итоге, дает возможность более полно выявить их племенные и продуктивные качества.

 

Гетерозис

В селекции животных особое внимание обращается на повы­шение скорости роста, увеличение продуктивности, плодовистости, на устойчивость к болезням помесей или гибридов I поколения.

 

Наблюдаемое у гибридов I поколения свойство превосходить по определенным признакам лучшую из родительских форм на­зывают гетерозисом.

Делят гетерозис на такие формы: приспособительную, пышного развития и. мутационную.

Гусставсон  различает репродуктивную (отражающаяся на повышении многоплодности), соматическую (то же, что и Пышное развитие) и п ри­способительную формы.

В некоторых случаях наблюдается сум­марный эффект этих трех форм гетерозиса. Но иногда гетерозис проявляется односторонне. У мулов, например, сильно выражен соматический и приспособительный гетерозис, но резко подавлен репродуктивный (мулы бесплодны).

 Выраженность гетерозиса зависит и от условий жизни гетерозиготных животных. Приспо­собительный гетерозис позволяет животным лучше адаптироваться даже к очень неблагоприятным условием, а соматический — проявляется часто только в более благоприятных условиях.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: