Земля – уникальная планета солнечной системы

Краткая характеристика планеты Земля. Географические координаты. Уникальность Земли в семействе планет солнечной системы в первую очередь связана с тем, что только на нашей планете существует жизнь. Шансы обнаружить хотя бы простейшие формы жизни на соседних планетах (даже на Марсе) большинством ученых оцениваются как близкие к нулю. Другие уникальные особенности Земли (наличие атмосферы с высоким содержанием кислорода, наличие океана, занимающего 70% поверхности планеты, высокая тектоническая активность, сильное магнитное поле и др.) так или иначе связаны с наличием жизни: они либо способствовали ее возникновению, либо являются следствиями жизнедеятельности.

Шарообразность Земли (а о том, что Земля представляет собой шар, знали еще древние греки) предопределяет выделение в ее строении концентрических оболочек. Впервые такой подход к изучению нашей планеты предложил австрийский геолог Э. Зюсс, он же предложил называть эти оболочки геосферами. Реальная форма Земли несколько отличается от сферической и при строгом математическом моделировании ее формы чаще всего используют такие понятия как эллипсоид и геоид. Геоид (что означает землеподобный) – это наиболее точная модель Земли, он представляет собой уникальное геометрическое тело, поверхность которого совпадает с поверхностью среднего уровня спокойной воды в океане, мысленно продолженной под материками так, что отвесная линия в любой точке пересекает эту поверхность под прямым углом. Поверхности эллипсоида и геоида не совпадают, расхождение между ними может достигать ±160 м. Относительно поверхности геоида измеряют высоты и глубины точек реальной поверхности Земли. Максимальную высоту (8848 м) имеет Эверест, а наибольшую глубину (11022 м) – Марианский желоб в Тихом океане. Экваториальный радиус Земли составляет 6375,75 км, полярные же радиусы неодинаковы: северный на 30 метров больше южного и равен 6355,39 км, (соответственно, южный - 6355, 36 км).

Ось вращения Земли, проходящая через полюса и центр планеты, наклонена к плоскости ее орбиты на угол 66°33'22". Именно эта величина определяет продолжительность дня и ночи на разных широтах и существенно влияет на тепловые (климатические) характеристики различных поясов Земного шара. Один оборот вокруг своей оси Земля совершает за 23 ч 56 мин 4 с, этот промежуток времени называют звездными сутками, а сутки, в которых ровно 24 часа, называют средними или солнечными сутками.

Единственный спутник Земли Луна имеет размеры, близкие к размерам Меркурия, ее диаметр составляет 3476 км., а средний радиус орбиты – 384,4 тыс. км. Орбита Луны наклонена к орбите Земли на 5 градусов. Период вращения Луны вокруг своей оси абсолютно совпадает с периодом ее обращения вокруг Земли, поэтому с Земли можно видеть только одно лунное полушарие.

Линии сечения земного шара плоскостями, параллельными экваториальной, называют параллелями, а линии сечения плоскостями, проходящими через ось вращения Земли – меридианами. Каждой параллели соответствует своя широта (северная или южная), а каждому меридиану – своя долгота (западная или восточная). Совокупность параллелей и меридианов называют географической сеткой, с ее помощью определяют географические координаты любой точки на поверхности Земли.

Географическая широта произвольной точки – это угол между плоскостью экватора и проходящей через эту точку нормалью (отвесной линией), широта изменяется от нуля (на экваторе) до 90 градусов. Долгота – это угол между меридиональной плоскостью данной точки и плоскостью некоторого меридиана, условно принятого за начальный (такой начальный меридиан проходит через Гринвичскую астрономическую обсерваторию* и называется Гринвичским). Долгота изменяется в пределах от нуля до 180°, меридиан, которому соответствует широта 180°, является линией смены дат.

Для удобства отсчета времени и временной координации деятельности людей поверхность Земли разделена (в первом приближении по меридианам) на 24 часовых пояса. Применять для отсчета времени систему часовых поясов предложил канадский инженер Флемингв 1879 г., сегодня этой системой пользуется весь мир. Изменению времени на 1 час должно соответствовать изменение долготы на 15°, однако границы часовых поясов строго совпадают с меридианами лишь в мировом океане, на суше смежные часовые пояса разделяют, как правило, не меридианы, а какие-либо близкие к ним (а иногда и не очень близкие) административные границы.

Наклон земной оси к плоскости эклиптики, как уже отмечалось, определяет широтные границы климатических зон (поясов). Центральный пояс земной поверхности, границами которого являются северный и южный тропики, называют тропическим, широта каждого тропика – 23° 26' 38''. В тропическом поясе Солнце два раза в год в полдень проходит через зенит, а на широте тропиков оно бывает в зените только один раз: в полдень 21 июня на северном тропике и 22 декабря - на южном.

Географические параллели, которым соответствует широта 66° 33' 22'' называют полярными кругами, область между полюсом и полярным кругом называют полярным поясом. Только за полярным кругом (т.е в более высокоширотной области) имеют место такие явления как полярный день и полярная ночь. Между полярным кругом и тропиком в каждом полушарии расположен умеренный пояс (область умеренного климата).

Строение Земли. Внешние и внутренние геосферы. К внешним геосферам принято относить атмосферу, гидросферу и биосферу, хотя последнюю из них следовало бы рассматривать как промежуточную оболочку, так как она включает в себя гидросферу и те области атмосферы и земной коры (а это уже внутренняя оболочка), в пределах которых существует органическая жизнь. Иногда в качестве внешней геосферы рассматривают магнитосферу, что также не вполне оправданно, так как магнитной поле присутствует в любой из геосфер.

Атмосфера. Атмосфера Земли представляет собой смесь газов, в ее нижних слоях содержатся также влага и пылевые частицы. В сухом очищенном воздухе вблизи поверхности Земли содержится азота примерно 78 % азота, чуть меньше 21 % кислорода и около 1 % аргона. На долю углекислого газа приходится примерно 0,03 %, а на долю всех остальных газов (водород, озон, инертные газы и др.) – около 0,01 %. Состав атмосферы практически не меняется вплоть до высот порядка 100 км. На уровне моря при нормальном давлении (1 атм = 1,033 кг/см2 = 1,013 105 Па) плотность сухого воздуха составляет 1,293 кг/м3, но при удалении от поверхности Земли плотность воздушной массы и связанное с ней давление быстро уменьшаются. Атмосфера непрерывно увлажняется за счет испарений воды с поверхности водоемов. Концентрация паров воды уменьшается с увеличением высоты быстрее, чем концентрация газов – 90 % влаги сосредоточено в нижнем пятикилометровом слое.

С изменением высоты меняются не только плотность, давление и температура воздуха, но и другие физические параметры атмосферы, а на больших высотах меняется и ее состав. Поэтому в атмосфере принято выделять несколько сферических оболочек с разными физическими свойствами. Основные из них – это тропосфера, стратосфера и ионосфера. Высотную протяженность (толщину) той или иной сферической оболочки Земли (это относится и к внутренним оболочкам) часто называют ее мощностью.

Тропосфера содержит около 80 % всей воздушной массы, ее мощность составляет 8…12 км в средних широтах, а над экватором – до 17 км. С увеличением высоты температура воздуха в пределах тропосферы непрерывно понижается вплоть до значений порядка -85°С (скорость понижения температуры составляет примерно 6 градусов на километр). Вследствие неравномерного прогрева поверхности земного шара тропосферные массы воздуха находятся в непрерывном движении, перенося не только тепло, но и влагу, пыль и всевозможные выбросы. Именно эти явления в тропосфере в первую очередь формируют погоду и климат на Земле.

Над тропосферой до высот порядка 50…55 км простирается стратосфера. В пределах этого слоя имеет место повышение температуры с увеличением высоты, на верхней границе стратосферы температура близка к нулю. В стратосфере практически отсутствует водяной пар. На высотах от 20 до 40 км расположена т.н. озоносфера, т.е. слой с повышенным содержанием озона. Этот слой часто называют щитом планеты, так как в нем почти полностью поглощается губительное для всего живого на Земле жесткое (коротковолновое) ультрафиолетовое излучение Солнца.

В промежутке между высотами 55 и 80 км расположен слой, в котором температура с высотой вновь уменьшается. У верхней границы этого слоя, который называют мезосферой, температура составляет примерно -80°С. За мезосферой вплоть до высот порядка 800…1300 км располагается ионосфера (иногда этот слой называют также термосферой, т.к. температура в этом слое с увеличением высоты непрерывно повышается).

Гидросфера. В составе гидросферы выделяют четыре вида вод: океаносферу, т. е. соленые воды морей и океанов (86,5 % массы), пресные воды суши (реки и озера), подземные воды и ледники. 97 % вод океаносферы сосредоточено в Мировом океане, являющемся не только основным хранилищем воды, но и основным аккумулятором тепла на нашей планете. Благодаря океану на Земле зародилась жизнь, образовалась и сохраняется кислородная атмосфера, океан поддерживает на низком уровне содержание в атмосфере углекислого газа, предохраняя планету от парникового эффекта (океан в существенно более высокой степени, нежели наземная растительность, выполняет функции "легких" нашей планеты).

В целом мировой океан, средняя глубина которого около 3,6 км, является холодным, только 8% воды теплее 10оС. Давление в толще воды растет с увеличением глубины со скоростью 0,1 ат/м. Соленость океанских вод, среднее значение которой составляет около 35 промилле (35 ‰) неодинакова (от 6…8 ‰ в поверхностных водах Балтики до 40 ‰ на поверхности Красного моря). В то же время состав и относительное содержание различных солей повсюду неизменны, что свидетельствует об устойчивости динамического равновесия между растворением веществ, попадающих в океан с суши, и их осаждением.

Удельная теплоемкость воды примерно в 4 раза больше, чем воздуха, однако из-за огромной разницы в плотности (почти в 800 раз) 1 кубический метр воды, охлаждаясь на 1 градус, способен нагреть на 1 градус более 3000 кубометров воздуха. В умеренных и высоких широтах воды Мирового океана летом накапливают тепло, а зимой отдают его в атмосферу, именно поэтому в приморских районах климат всегда мягче, чем в глубине континентов. В экваториальных широтах вода нагревается круглый год, и это тепло переносится океанскими течениями в высокоширотные области, холодные же воды, захватываясь глубинными противотечениями, возвращаются в тропики. Помимо течений и противотечений, океанские воды перемещаются и перемешиваются за счет приливов и отливов, а также волн другой природы, среди которых выделяют ветровые волны, барические волны и цунами.

Биосфера. Наличие гидросферы и атмосферы с высоким содержанием кислорода существенно отличает нашу планету от всех других, входящих в солнечную систему. Но главное отличие Земли состоит в наличии на ней живого вещества – растительности и животного мира. Термин биосфера ввел в научный оборот уже упоминавшийся Э. Зюсс.

Биосфера охватывает все пространство, где существует живое вещество – нижнюю часть атмосферы, всю гидросферу и верхние горизонты земной коры. Масса живого вещества, составляющая примерно 2,4·1015 кг, ничтожно мала в сравнении даже с массой атмосферы (5,15·1018 кг), однако по степени воздействия на систему под названием Земля, эта оболочка существенно превосходит все другие.

Основу живого вещества составляет углерод, дающий бесконечное множество разнообразных химических соединений. Кроме него в состав живого вещества входят кислород, водород и азот, остальные химические элементы встречаются в незначительных количествах, хотя их роль в жизнеобеспечении тех или иных организмов может быть исключительно важной. Основная масса живого вещества сосредоточена в зеленых растения. Процесс естественного построения органических веществ с использованием солнечной энергии – фотосинтез – вовлекает в годовой кругооборот огромные массы углекислоты (3,6·1014 кг) и воды (1,5·1014 кг), при этом выделяется 2,66·1014 кг свободного кислорода. С химической точки зрения фотосинтез является окислительно-восстановительной реакцией:

СО2 + Н2О → СН2О + О2.

По способу питания и отношению к внешней среде живые организмы делятся на автотрофные и гетеротрофные. Последние питаются другими организмами и их остатками, а пищей для автотрофных организмов являются минеральные (неорганические) вещества. Большинство организмов относятся к аэробным, т. е. способны существовать только в среде, содержащей воздух (кислород). Меньшая часть (в основном это микроорганизмы) относится к анаэробным, обитающим в бескислородной среде.

При гибели живых организмов происходит процесс, обратный фотосинтезу, органические вещества разлагаются путем окисления. Процессы образования и разложения органики находятся в динамическом равновесии, благодаря чему общее количество биомассы практически не меняется со времен зарождения жизни на Земле.

Влияние биосферы на процессы геологической эволюции Земли было подробно проанализировано выдающимся российским ученым академиком В.И. Вернадским. В течение более чем трех миллиардов лет живое вещество поглощало и трансформировало энергию Солнца. Значительная часть этой энергии законсервирована в залежах полезных ископаемых органического происхождения, другая часть использована в процессах формирования различных горных пород, накопления солей в мировом океане, накопления кислорода, содержащегося в атмосфере, а также растворенного в океанской воде и входящего в состав горных пород. Вернадский первым указал на ведущую роль биосферы в формировании химического состава атмосферы, гидросферы и литосферы, обусловленную необычайно высокой геохимической активностью живого вещества.

Жизнь на Земле существует в огромном множестве форм, однако все эти формы существуют не автономно, а связаны сложными взаимоотношениями в единый непрерывно развивающийся гигантский комплекс.

Внутренние геосферы – это оболочки в твердом теле Земли. В нем можно выделить три крупные области (главные внутренние оболочки): центральную – ядро, промежуточную – мантию и наружную – земную кору. Углубиться в недра Земли с целью непосредственного их изучения удалось пока лишь на глубину чуть более 12 км, такая сверхглубокая скважина была пробурена в нашей стране (на Кольском полуострове). Но 12 км – это менее 0,2 % земного радиуса. Поэтому с помощью глубокого и сверхглубокого бурения можно получить данные о строении, составе и параметрах земных недр лишь в пределах верхних горизонтов коры.

Информацию о глубинных участках, в том числе и о поверхностях, разделяющих различные внутренние оболочки, геофизики получают, анализируя и обобщая результаты многочисленных сейсмических (от греч. «сейсмос» - колебание, землетрясение) исследований. Суть этих исследований (в упрощенном виде) заключается в том, что по результатам измерения времени прохождения сейсмической волны между двумя точками на поверхности (или внутри) земного шара, можно определить ее скорость, а по величине скорости волны – параметры среды, в которой она распространялась.

Земной корой называют верхнюю каменную оболочку, мощность которой в различных участках составляет от 6 - 7 км (под глубокими океаническими впадинами) до 70 – 80 км под Гималаями и Андами. Можно сказать, что нижняя поверхность земной коры является своеобразным «зеркальным отражением» наружной поверхности твердого тела Земли. Эту поверхность – границу раздела между корой и мантией – называют раздел Мохоровича.

В химическом составе земной коры преобладают кремний и алюминий, отсюда происходит условное название этой оболочки – "сиал". Строение земной коры отличается большой сложностью, проявлением которой являются отчетливо выраженные вертикальные и горизонтальные неоднородности. В вертикальном направлении в пределах земной коры традиционно выделяют три слоя – осадочный, гранитный и базальтовый. Породы, образующие эти слои, различны по составу и происхождению.

Мантия расположена между ядром и земной корой, поверхность, разделяющую мантию и ядро, называют раздел Вихерта-Гутенберга. Это промежуточная и самая крупная оболочка Земли, она простирается до глубин порядка 2900 км. Масса мантии составляет около 2/3 всей массы планеты. На границе земной коры и мантии температура может превышать 1000оС, а давление 2000 МПа. В этих условиях вещество мантии может переходить из кристаллического состояния в аморфное (стекловидное) состояние. О химическом составе вещества мантии судить значительно сложнее, тем не менее эту оболочку называют " сима ". Это означает, что преобладающими элементами в составе мантии (по крайней мере, в составе верхней мантии), являются кремний и магний.

Ядро – это центральная и наиболее плотная оболочка Земли, ее радиус составляет 3470 км. На границе Вихерта-Гутенберга поперечные волны пропадают, это позволяет сделать вывод о том, что наружная часть ядра находится в жидком состоянии. В пределах внутренней части ядра (его радиус примерно 1250 км) скорость продольных волн снова возрастает, и вещество, как полагают, снова переходит в твердое состояние. Химический состав внешнего и внутреннего ядра приблизительно одинаков, преобладают железо и никель, отсюда условное название этой оболочки – "нифе ".

Физические поля Земли. Описание строения нашей планеты будет неполным, если не рассмотреть ее физические поля, в первую очередь, гравитационное и магнитное поля. Понятие «поле» используют в тех случаях, когда каждой точке в определенной области пространства можно сопоставить значение некоторой физической величины. В этом смысле можно говорить о поле температур (тепловом поле), поле скоростей, поле сил и т. п. В соответствии с характером физической величины поля подразделяют на векторные и скалярные.

Гравитационное поле Земли. Установленный И. Ньютоном закон всемирного тяготения выражается формулой

Fт = GMm/r2,

где Fт - сила тяготения, М и m - массы взаимодействующих тел, r - расстояние между центрами тяжести этих тел, G = 6, 673·10-11 м3с-2кг-1 - гравитационная постоянная.

Описывая гравитационное взаимодействие какого-либо малого тела, обладающего массой m, с большим небесным телом (например, с Землей), закон тяготения удобно записать в виде:

Fт = lm/r2,

где l = GM – постоянная тяготения рассматриваемого небесного тела. В случае Земли эта постоянная имеет величину около 4·1014 м3с-2.

Если малое тело (тяготеющая точка) находится в непосредственной близости над поверхностью небесного тела, силу притяжения определяют как

Fт =gm,

где g = l/r2 - ускорение свободно падающего тела. В случае Земли, как известно, g = 9,8 м/с2.

Отметим, что при необходимости определять силу тяготения с большой точностью нужно учитывать зависимости величины g от координат точки, в которой определяется эта сила. В предположении однородного распределения массы по объему Земли силу тяжести в любой заданной точке можно рассчитать. Имеющиеся на практике отклонения фактических (измеренных) значений ускорения g от расчетных (т. н. гравитационные аномалии) обусловлены в первую очередь неравномерностью распределения масс. Тщательное изучение гравитационного поля Земли позволяет не только выявлять крупные тектонические нарушения, но и вести поиски месторождений полезных ископаемых.

Магнитное поле Земли. О том, что Земля обладает магнитными свойствами, известно с давних времен. Достаточно сказать, что история непосредственных магнитных измерений на земном шаре насчитывает более 400 лет (результаты экспериментальных исследований “большого магнита - Земли” были опубликованы английским естествоиспытателем У. Гильбертом в 1600 г.). Наша планета действительно представляет собой большой магнит, форма современного магнитного поля Земли близка к той, которая была бы создана магнитным диполем, помещенным в ядре.

Любая земная порода в момент своего образования под действием геомагнитного поля приобретает намагниченность, которая сохраняется до тех пор, пока эта порода не будет разогрета до температур, превышающих температуру Кюри. Изучая естественную остаточную намагниченность пород, возраст которых известен, можно узнать о пространственном распределении и временных изменениях геомагнитного поля в прошлом. Можно сказать, что информация об эволюции геомагнитного поля в буквальном смысле «записана» в земных недрах. Роль магнитного носителя лучше всего выполняют магматические породы, извергавшиеся из вулканов при высокой температуре (выше температуры Кюри для содержащихся в этих породах ферромагнитных материалов). Одним из важнейших результатов подобных палеомагнитных исследований является открытие т. н. инверсий геомагнитного поля (иногда используется термин «реверсия»), т. е. изменения направления магнитного момента Земли на противоположное.

Магнитные полюса нашей планеты не совпадают с географическими и с течением времени могут изменять свое положение. Последние 100 лет, как показывают наблюдения, северный магнитный полюс перемещается в восточном направлении (с севера Канады через Северный Ледовитый океан к Сибири), его перемещение составило уже около 1000 км. Пока не вполне ясно, что это – начало очередной инверсии, или часть нормальной осцилляции, после которой полюс вернется на свое привычное место.

Тепловое поле Земли. Планета Земля находится в термодинамическом равновесии с окружающей средой, она одновременно и поглощает, и излучает примерно равные количества тепла. Главным источником внешней энергии для Земли является Солнце. Среднее значение плотности потока солнечной энергии над атмосферой Земли составляет примерно 0,14 Вт/см2. Почти половина падающей энергии (порядка 45%) отражается в мировое пространство, остальная энергия аккумулируется атмосферой, водой, почвой и зелеными растениями. Преобразуясь в тепло, энергия солнечной радиации приводит в движение массы атмосферного воздуха и огромные массы воды в мировом океане.

Определенный вклад в создание теплового поля Земли вносят и внутренние источники. Этих источников достаточно много, но к основным следует отнести только три: распад радиоактивных элементов, плотностная (гравитационная) дифференциация вещества и приливное трение.

Скалярное тепловое поле Земли имеет достаточно сложное строение. В верхнем слое земной коры (до 30 – 40 м) сказывается влияние прогрева поверхности солнечными лучами, поэтому этот слой называют гелиотермической зоной. Температура в этой зоне периодически изменяется в течение суток и в течение года. Чем больше период колебаний поверхностной температуры, тем глубже эти колебания проникают в земные недра, но в любом случае амплитуда колебаний температуры экспоненциально уменьшается с увеличением глубины.

Температурный режим нижней зоны земной коры, называемой геотермической зоной, определяется внутренним теплом. В этой зоне с увеличением глубины температура повышается, скорость ее изменения различна в разных участках поверхности земного шара, что связано как с различной теплопроводностью пород, так и с неравномерностью теплового потока, идущего их земных недр.

Между гелиотермической и геотермической зонами проходит пояс постоянных температур, в пределах которого среднегодовая температура, соответствующая тому или иному региону, примерно постоянна. Глубина залегания этого пояса зависит от теплофизических свойств пород и от широты местности (увеличивается с повышением широты). Если среднегодовая температура какой-то области отрицательна, то атмосферные осадки, просачивающиеся в недра, превращаются в лед, в этих условиях образуется т.н. вечная мерзлота. В зонах вечной мерзлоты, общая площадь которых составляет около четверти всей твердой поверхности нашей планеты, верхний слой почвы оттаивает в летнее время на глубину от нескольких сантиметров до 3 - 4 метров.

Развитие отечественной и мировой экономики пока базируется на росте энергопотребления. В ХХ веке население Земли увеличилось в 2,2 раза, а потребление энергии – в 8,5 раз. В условиях надвигающегося энергетического кризиса солнечная энергия, а также тепловая энергия земных недр могут и должны составить конкуренцию традиционным источникам энергии (нефть, газ, уголь, ядерное топливо).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: