Принцип оптимальности Беллмана — Студопедия
Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!

Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Принцип оптимальности Беллмана




Основным методом динамического программирования является метод рекуррентных соотношений; который основывается на использовании принципа оптимальности, разработанного американским математиком Р.Беллманом.

Суть принципа:

Каковы бы ни были начальное состояние на любом шаге и управление, выбранное на этом шаге, последующие управления должны выбираться ОПТИМАЛЬНЫМИ относительно состояния, к которому придет система в конце каждого шага.

Использование данного принципа гарантирует, что управление, выбранное на любом шаге, не локально лучше, а лучше с точки зрения процесса в целом.

Условная оптимизация

Безусловная оптимизация

Si – состояние системы на i-м шаге. Основная рекуррентная формула динамического программирования в случае решения задачи максимизации имеет вид:

, где максимум в данной формуле берется по всем возможным решениям в ситуации, когда система на шаге m находится в состоянии i.

Величина fm(i) – есть максимальная прибыль завершения задачи из состояния i, если предположить, что на шаге m, система находится в состоянии i.

Максимальная прибыль может быть получена максимизацией суммы прибылей самого шага m и максимальной прибыли шага (m+1) и далее, чтобы дойти до конца задачи.

Планируя многошаговую операцию надо выбирать управление на каждом шаге с учетом всех его будущих последствий на ещё предстоящих шагах.

Управление на i-м шаге выбирается не так, чтобы выигрыш именно на данном шаге был максимальным, а так, чтобы была максимальна сумма выигрышей на всех оставшихся шагах плюс данный шаг.

Среди всех шагов последний шаг планируется без оглядки на будущее, т.е. чтобы он сам, как таковой принес наибольшую выгоду.

Задача динамического программирования начинает решаться с конца, т.е. с последнего шага. Решается задача в 2 этапа:

1 этап (от конца к началу по шагам): Проводится условная оптимизация, в результате чего находится условные оптимальные управления и условные оптимальные выигрыши по всем шагам процесса.

2 этап (от начала к концу по шагам): Выбираются (прочитываются) уже готовые рекомендации от 1-го шага до последнего и находится безусловноеоптимальное управление х*, равный х*1, х*2, …, х*m.





Дата добавления: 2014-02-04; просмотров: 457; Опубликованный материал нарушает авторские права? | Защита персональных данных


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 9289 - | 7861 - или читать все...

Читайте также:

  1. I. По принципу деловой организации предпринимательской деятельности
  2. I. Сущность и принципы оплаты труда
  3. II. По принципу организационно-правовых форм предприятий, входящих в состав рыночной инфраструктуры
  4. II. ПРИНЦИП СВОБОДНОГО ДОСТУПА К ПРАВОСУДИЮ
  5. II.2. Принцип работы усилителя
  6. III вопрос: Принципы обследования и наблюдения беременных в женской консультации
  7. Q Принципы
  8. VI. Общепризнанные принципы и нормы международного права и нормы международных договоров
  9. VII.ПРИНЦИП УВАЖЕНИЯ ЧЕСТИ И ДОСТОИНСТВА ЛИЧНОСТИ
  10. X. ПРИНЦИП ДИСПОЗИТИВНОСТИ ГРАЖДАНСКОГО СУДОПРОИЗВОДСТВА И ПРИНЦИП ПУБЛИЧНОСТИ УГОЛОВНОГО СУДОПРОИЗВОДСТВА
  11. А. Принципы строительства на просадочных грунтах
  12. Автоматизація зрошення. Принципи автоматизації поверхневого поливу і краплинного зрошення. Автоматизація стаціонарних і напівстаціонарних дощувальних систем


 

18.207.130.162 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.