Расчет несимметричных режимов

ЛЕКЦИЯ № 12

Контрольные вопросы

Begin

a.re:= 1; a.im:= 1;

b.re:= 1; b.im:= 2;

AddC(a, b, c);

WriteLn('Сложение: 'c.re:5:1, c.im:5:1,'i');

SubC(a, b, c);

WriteLn('Вычитание: 'с.re:5:1, с.im:5:1,'i');

MulC(a, b, c);

WriteLn('Умножение: 'c.re:5:1, c.im:5:l,'i');

DivC(a, b, c);

WriteLn('Деление: 'c.re:5:l, с.im:5:1,'i');

end.

После объявления Uses Cmplx программе стали доступны все объекты, объявленные в интерфейсной части модуля CMPLX. При необходимости можно переопределить любой их этих объектов, как это произошло, например, с объявленной в модуле типизированной константой С. Переопределение объекта означает, что вновь объявленный объект «закрывает» ранее определенный в модуле одноименный объект. Чтобы получить доступ к «закрытому» объекту, нужно воспользоваться составным именем: перед именем объекта поставить имя модуля и точку. Например, оператор

WriteLn(cmplx.c.re:5:l, cmplx.с.im:5:1,'i'); выведет на экран содержимое «закрытой» типизированной константы из предыдущего примера.

1 Стандартные модули в Паскале.

2 Структура модуля.

3 Ключевые слова Unit, Interface, Implementation. Описание каждого раздела.

4 Концепция разработки собственного модуля. Примеры программ.

Один из наиболее часто встречающихся случаев несимметричного режима трехфазной цепи получается при соединении фаз несимметричного приемника по схеме звезда без нейтрального провода или с нейтральным проводом, комплексное сопротивление которого необходимо учитывать при расчете.

Рисунок 1

При заданном действующем значении линейного напряжения приемника можно дополнить трехфазную цепь воображаемым симметричным трехфазным источником ЭДС, соединенным по схеме звезда (рисунок 1), с действующим значением фазной ЭДС:

Полученная цепь имеет две нейтральные точки: симметричного генератора N и несимметричного приемника n – два узла цепи. Поэтому для расчета режима цепи следует применить метод двух узлов, заменив в проводимости ветвей цепи постоянного тока комплексными проводимостями ветвей цепи синусоидального тока , а постоянные ЭДС и токи – комплексными значениями соответствующих синусоидальных ЭДС и токов. В рассчитываемой трехфазной системе комплексное значение напряжения между нейтральными точками приемника n и воображаемого генератора N называется напряжением смещения нейтрали. На основании метода двух узлов

(1)

или с учетом и равенства комплексное значение напряжения смещения нейтрали

(2)

Фазные напряжения приемника определяются по второму закону Кирхгофа для трех контуров:

(3)

По закону Ома фазные токи и ток в нейтральном проводе соответственно равны:

(4)

Распределение напряжений между фазами несимметричного приемника, которые соединены по схеме звезда, наглядно иллюстрирует потенциальная диаграмма цепи (рисунок 2, а).

Рисунок 2 Рисунок 3

При построении потенциальной диаграммы равный нулю потенциал выбран у нейтральной точки N воображаемого генератора, которая служит началом отсчета. Из начала отсчета построены три вектора фазных ЭДС воображаемого генератора , и . Концы этих векторов определяют комплексные значения потенциалов , и линейных проводов А, В и С при , а следовательно линейных напряжений , , . При симметричном приемнике нет смещения нейтрали, т. е. , и потенциал нейтральной точки приемника . Поэтому на диаграмме потенциал нейтральной точки приемника совпадает с нейтральной точкой генератора . При несимметричном приемнике смещение нейтрали , как следует из (1), не равно нулю. Поэтому потенциал нейтральной точки приемника смещается относительно потенциала нейтральной точки генератора , т. е. из центра треугольника линейных напряжений (смещение нейтрали).

Рассмотрим простейший случай приемника с активными сопротивлениями фаз и при отсутствии нейтрального провода (рисунок 2, б). Проводимости фаз В и С одинаковые: , а проводимость фазы А изменяется от 0 до ∞. Обозначим отношение и найдем напряжение смещения нейтрали по (1), учитывая ():

или

При изменениях проводимости в пределах от нуля до бесконечности множитель при ЭДС остается действительной величиной. Следовательно, напряжение смещения нейтрали совпадает по фазе с ЭДС при , а при их фазы отличаются на (рисунок 2, а). В частности, при размыкании фазы А, т. е. или и , смещение нейтрали

При этом фазные напряжения приемника равны:

Здесь учтено, что

При или , т. е. коротком замыкании точек А и n (рисунок 2, б), очевидно, что будет ; ; .

Потенциал нейтральной точки приемника может сместиться далеко за пределы треугольника линейных напряжений, если проводимости фаз приемника, соединенных по схеме звезда без нейтрального провода, различны по характеру.

Рассчитаем, например, смещение нейтрали и фазные напряжения для приемника с комплексными проводимостями фаз , , при условии (рисунок 3, а).

Смещение нейтрали по (1)

(5)

Фазные напряжения приемника рассчитываются так же, как и для приемника по рисунку 2, б. Для действующих значений напряжений в результате расчета получается:

Потенциальная диаграмма показана на рисунке 3, б.

Схема цепи по рисунку 3, а имеет важное свойство, которое используется в различных устройствах. Если емкостная проводимость фазы А и индуктивная проводимость фазы В одинаковые и постоянные: , то ток в фазе С не зависит от значения активной проводимости этой фазы. Действительно из векторной диаграммы на рисунок 3, б и формулы (5) следует, что

т. е.

Фазные токи несимметричного приемника, фазы которого соединены по схеме треугольник (рисунок 4), при заданных линейных напряжениях определяются по закону Ома:

Линейные токи рассчитываются на основании первого закона Кирхгофа:

Рисунок 4

При расчете более сложной несимметричной трехфазной цепи, с несимметричными приемниками все приемники путем преобразований заменяются эквивалентным, фазы которого соединены по схеме звезда. Эти преобразования выполняются в той же последовательности, что и для симметричных приемников, но сопротивление каждой фазы эквивалентного приемника приходится вычислять отдельно.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: