double arrow

Метод импликантных матриц


Рассмотрим графический метод отыскания тупиковых форм функции из сокращенной ДНФ.

Импликантная матрица представляет собой таблицу, столбцы которой соответствуют всем конституентам единицы СДНФ заданной функции, а строки – всем простым импликантам.

В таблице по строке каждой импликанты отмечаются те минтермы, которые ею поглощаются.

Чтобы получить минимальную ДНФ заданной функции, достаточно найти минимальное число импликант, которые совместно накрывают все столбы импликантной матрицы, если в каком-либо из столбцов составленной импликантной матрицы функции имеется только одна отметка, то соответствующая ей импликанта является обязательной и обязательно входит в тупиковую форму функции, так как без нее будет получено накрытие всего множества минтермов.

Для случая имеем импликантную матрицу, представленную в табл.18.

В данном случае импликанты AC и являются обязательными. Их сумма покрывает все минтермы, следовательно, тупиковая форма Она единственна и поэтому является минимальной.

Таблица 18.

Пример. Найти минимальную ДНФ функции, используя метод Квайна и метод импликантных матриц:

Сокращенная ДНФ

Импликантная матрица функции дана в табл.19.

Таблица 19

Так как нет столбцов с одной отметкой, то ни одна из импликант не является обязательной. Найдем минимальное количество простых импликант, накрывающее все колонки.

Возможны две тупиковые формы функции:

;

Обе формы содержат одинаковое число букв и, следовательно, обе являются минимальными.

Возможны другие тупиковые формы данной функции, но они не минимальны:


Сейчас читают про: