double arrow

Сырье и способы получения азотной кислоты

Азотная кислота. Свойства и применение. История открытия.

Азотная кислота по объему производства занимает среди других кислот второе место после серной кислоты. Все возрастающий объем производства HNO3 объясняется огромным значением азотной кислоты и ее солей для народного хозяйства.

Азотная кислота является одним из исходных продуктов для получения большинства азотсодержащих веществ. До 70-80% ее количества расходуется на получение минеральных удобрений. Также азотная кислота применяется:

- при производстве серной кислоты нитрозным способом;

- при получении почти всех видов взрывчатых веществ;

- нитратов и ряда других технических солей;

- в промышленности органического синтеза;

- в ракетной технике;

- как окислитель в различных процессах и во многих отраслях народного хозяйства.

Учитывая нужды различных потребителей, промышленностью вырабатывается азотная кислота девяти сортов с концентрацией от 45 до 99 %. В небольших объемах выпускается реактивная и азотная кислота особой чистоты. В производстве взрывчатых веществ нитрованием органических продуктов применяют концентрированную азотную кислоту. Для получения удобрений потребляется, как правило, разбавленная азотная кислота.

Основным сырьем для производства неконцентрированной азотной кислоты в настоящее время являются аммиак, воздух и вода. Вспомогательными материальными и энергетическими ресурсами являются катализаторы окисления аммиака и очистки выхлопных газов, природный газ, пар и электроэнергия.




Азотная кислота и главным образом ее природная соль - натриевая селитра известны с давних времен. В 778 г. Арабский ученый Гебер описал способ приготовления “крепкой водки” (так называлась тогда азотная кислота) путем перегонки селитры с квасцами. В России первые прописи по производству азотной кислоты из селитры были составлены М.В. Ломоносовым.

До начала XX века природная селитра была единственным источником получения азотной кислоты. Этот процесс основан на следующей реакции:

NaNO3 + H2SO4 = HNO3 + NaHSO4

Усовершенствованный вариант этого метода получения азотной кислоты состоял в том, что разложение селитры серной кислотой производилось в вакууме. При этом температура разложения селитры снижалась до 80-160 0С; продолжительность отгонки кислоты сокращалась до 6 часов и достигался выход азотной кислоты близкий к теоретическому. Такой способ получения азотной кислоты, целиком зависящий от импорта чилийской селитры, впоследствии был оставлен.



В начале XX века была решена исключительно важная проблема связывания атмосферного азота, что дало человечеству новый неисчерпаемый источник сырья для производства азотсодержащих соединений.

Еще в 1781 г. Кэвендиш в результате электрического разряда в воздухе получил окислы азота. В 1814 г. В.Н. Каразин внес предложение о “низведении электричества с верхних слоев атмосферы для производства селитры”. Первый патент на способ получения азотной кислоты при помощи электрического разряда в воздухе и превращения окислов азота в нитриты и в нитраты был получен в 1859 г.

В 1901 г. Было положено начало фиксации азота воздуха в пламени электрической дуги (дуговой метод). В 1902 г. в США сооружен завод по фиксации атмосферного азота с помощью электрической дуги, возникающей при пропускании между электродами тока силой 0,75 ампер и напряжением 8000 вольт. Из-за несовершенства конструкции печи и большого расхода электроэнергии завод был закрыт в 1904 г.

Производство азотной кислоты дуговым методом интересно тем, что в нем использовали дешевое исходное сырье - воздух. Аппаратурное оформление процесса было довольно несложным. Однако для его осуществления требовалось огромное количество электроэнергии, достигающее 70000 квт´ч на 1 т N2 (это соответствует 64 т условного топлива)

В настоящее время промышленное производство азотной кислоты осуществляется на основе контактного окисления синтетического аммиака. Процесс складывается из двух основных стадий: получение окиси азота и переработка ее в азотную кислоту.

Стадия окисления аммиака в окись азота в общем виде выражается уравнением:

4NH3 + 5O2 = 4NO + 6H2O

Стадия окисления окиси азота в высшие окислы азота и переработка их в азотную кислоту может быть представлена уравнениями:

2NO + O2 = 2NO2

3NO2 + H2O = 2HNO3 + NO

Суммарную реакцию без учета побочных реакций, проходящих с образованием элементарного азота и других соединений, можно выразить уравнением

NH3 + 2O2 = HNO3 + H2O +421,2 кдж

Исследования показывают, что при окислении аммиака на различных катализаторах и в зависимости от условий ведения процесса можно получить окись азота, элементарный азот и закись азота:

4NH3 + 5O2 = 4NO + 6H2O +907,3 кдж

4NH3 + 4O2 = 2N2O + 6H2O +1104,9 кдж

4NH3 + 3O2 = 2N2 + 6H2O +1269,1 кдж

Соответственно подбирая катализатор и условия ведения реакции, можно изменить состав получаемых продуктов.

При использовании в качестве катализатора платины выход окиси азота в интервале температур 700-8500С может достигать 97-98%. Катализаторы из платиновых сплавов являются наилучшими для избирательного окисления аммиака в окись азота.

Реакция окисления аммиака до окиси азота идет с незначительным изменением объема, поэтому изменение давления не оказывает существенного влияния на равновесный выход продуктов взаимодействия. Большие величины константы равновесия этой реакции свидетельствуют о практической ее необратимости при промышленных условиях осуществления процесса.

Чистая платина обладает недостаточной прочностью, поэтому применяют сплавы платины с родием и палладием.

Поверхность платиновых сеток в процессе эксплуатации сильно разрыхляются, гладкие блестящие нити становятся губчатыми и матовыми. В результате этого сильно развивается поверхность катализатора, что приводит к повышению его активности. С течением времени разрыхление поверхности платиновых сеток приводит к их сильному разрушению и большим потерям платины. Добавление к платине родия и палладия имеет двоякое значение: во-первых, повышается активность катализатора, во-вторых, уменьшаются потери катализатора.

В промышленности нашли применение комбинированные катализаторы, в которых наряду с платиной используются и другие, более дешевые материалы.

Главными факторами, определяющими высокую скорость образования азотной кислоты, являются проведение абсорбции под давлением при пониженных температурах.

Азотная кислота обладает высокой коррозионной активностью, поэтому для изготовления аппаратуры и трубопроводов применяются кислотостойкие легированные стали.

На производство азотной кислоты расходуется в основном аммиак, стоимость его на 70% определяет себестоимость азотной кислоты. Вода служит в основном хладагентом и может быть использована повторно.






Сейчас читают про: