double arrow

Тема 6. Момент импульса. Закон сохранения момента импульса


Моментом импульса материальной точки,вращающейся относительно неподвижной оси OO′, называется величина L, равная произведению импульса этой точки на расстояние r от этой точки до оси вращения: .

Момент импульса является векторной величиной. Вектор направлен по оси вращения в соответствии с правилом правого винта.

При вращении твердого тела относительно неподвижной оси отдельные его точки, находящиеся на различном расстоянии от оси вращения, имеют различные скорости . Поэтому, чтобы найти момент импульса твердого телаотносительно некоторой оси вращения, необходимо разбить это тело на элементарные объемы так, чтобы каждый элементарный объем можно было бы рассматривать как материальную точку массой , находящуюся на расстоянии от оси вращения, движущауюся со скоростью .

Тогда момент импульса твердого телаL равен суммемоментов импульсавсех n материальных точек массами , на которые разбито это тело:

.

Так как для твердого тела угловая скорость вращения всех материальных точек, на которые разбито это тело, одинакова, то, используя формулу , получим

или в векторной форме: .

Продифференцировав это уравнение по времени, получим:

, откуда .

То есть .

Это выражение – еще одна форма уравнения динамики вращательного движения твердого тела: скорость изменения момента импульса твердого тела относительно оси вращения равна векторной сумме моментов всех действующих на это тело сил относительно той же оси вращения.

В замкнутой системе векторная сумма моментов внешних сил равна нулю. Тогда и, следовательно, .

Таким образом, момент импульса замкнутой системы сохраняется, что является законом сохранения момента импульса.

Заказать ✍️ написание учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сейчас читают про: