Экономико-математические методы основаны на использовании корреляционного и регрессионного анализа, позволяющего устанавливать тесноту связи и вид зависимости среднего значения какой-либо величины от некоторой другой или от нескольких величин. В нашем случае - это установление зависимости развития спроса от влияния наиболее главных факторов. в практике прогнозирования товарно-групповой структуры спроса чаще всего применяются трендовые и регрессионные модели:
Трендовые модели прогнозирования спроса представляют собой уравнения, формализующие устойчивые процессы его развития. Они применяются для прогнозирования наиболее стабильных закономерностей по крупным товарным подотраслям (например, соотношение спроса на продовольственные и непродовольственные товары). Основной параметр трендовых моделей - время, то есть по существу речь также идет об экстраполяции на прогнозируемый период тенденций и закономерностей базисного периода.
Регрессионные (факторные) модели отражают количественную связь одного показателя с другим или с группой других (множественная регрессия). В качестве переменных выступают факторы, определяющие динамику спроса. Математическую основу построения моделей составляют важнейшие положения теории вероятности, математической статистики и высшей математики. Процесс построения подобных моделей состоит из нескольких последовательных этапов.
Первым и важнейшим этапом моделирования развития товарно-групповой структуры спроса населения является отбор факторов. Они должны отражать объективные процессы изучаемого явления, быть количественно измеримыми и независимыми друг от друга.
На втором этапе рассчитывается сила влияния или теснота связи между факторами и спросом в базисном периоде. Она определяется с помощью коэффициентов корреляции и критериев согласия.
На третьем этапе выявляется математическая форма связи или вид зависимости спроса от факторов, подбираются функции, наиболее точно описывается процесс развития спроса.
Четвертый этап: расчет параметров уравнения. Параметры уравнений выражают степень и направление воздействия каждого фактора на спрос и рассчитываются методом наименьших квадратов.
Пятый этап: оценка прогностической ценности модели на основе ретроспективных расчетов.
Экономико-математические методы эффективно используется при краткосрочном прогнозировании. Так как объективная реальность нашей экономики состоит в том, что довольно трудно выявить и определить количественно более менее стабильные факторы, влияющие на прогнозируемый процесс. Поэтому составление среднесрочных и, тем более, долгосрочных прогнозов представляется довольно затруднительным в современных условиях. И как правило, преобладает прогнозирование на краткосрочные периоды. Экономико-математическое моделирование является основой экономической прогностики. Оно позволяет на строго количественной основе выявить характер связей между отдельными элементами рынка и теми факторами, которые влияют на его развитие. Что особенно важно - математические модели дают возможность наблюдать, как станут развиваться события при тех или иных начальных допущениях
При экономико-математическом моделировании спроса может также использоваться группа методов - экспоненциальное сглаживание и прогнозирование, основанные на использовании уже сделанных прогнозов тенденций развития спроса и самых последних данных о продаже товаров.
Математические методы помогают вскрыть количественные явления и взаимосвязи. Но они лишь продолжение экономического анализа, конечный результат в первую очередь зависит от выбора базисного периода, отбора факторов, от того, правильно ли определена степень устойчивости явления.
Графические методы связаны геометрическим изображением функциональной зависимости при помощи линий на плоскости. С помощью координатной сетки строятся графики зависимости, например, уровня издержек от объема произведенной и реализованной продукции, а также графики, на которых можно изображать корреляционные связи между показателями (диаграммы сравнения, кривые распределения, диаграммы временных рядов, статистические картограммы).
Пример: построение сетевого графика при строительстве и монтаже предприятий. Составляется таблица работ и ресурсов, где в технологической последовательности указываются их характеристика, объем, исполнитель, сменность, потребность в материалах. Продолжительность выполнения задания и другая информация. Исходя из данных показателей, подготавливают сетевой график. Оптимизация графика осуществляется посредством сокращения критического пути, т.е. минимизации сроков выполнения работ при заданных уровнях ресурсов, минимизации уровня потребления ресурсов при фиксированных сроках выполнения работ.
Метод корреляционно-регрессивного анализа используют для определения тесноты связи между показателями, не находящимися в функциональной зависимости. Теснота связи измеряется корреляционным отношением (для криволинейной зависимости). Для прямолинейной зависимости исчисляется коэффициент корреляции. Метод применяют при решении задач на «запуск-выпуск».
Пример: определить зависимость выпуска изделий в среднем от их запуска, составив соответствующее управление регрессии.
Метод линейного программирования сводится к нахождению крайних значений (максимума и минимума) некоторых функций переменных величин. Основано на решение системы линейных уравнений, когда зависимость между явлениями строго функциональна.
Пример: задачи рациональности использования времени работы производственного оборудования.
Методы динамического программирования применяют при решении оптимизационных задач, в которых целевая функция и ограничения характеризуют нелинейными зависимостями.
Пример: заполнить транспортное средство грузоподъемностью Х грузом, состоящим из определенных предметов так, чтобы стоимость всего груза оказалась максимальной.
Математическая теория игр исследует оптимальные стратегии в ситуациях игрового характера. Решение требует определенности в формулировке условий: установления количества игроков, возможных выигрышей, определения стратегии.
Пример: максимизировать среднюю величину дохода от реализации выпущенной продукции, учитывая капризы погоды.
Математическая теория массового обслуживания.
Пример: обеспечение рабочих необходимым инструментом.
Матричный метод основан на линейной и векторно-матричной алгебре, применяется для изучения сложных и высокоразмерных структур на отраслевом уровне, ан уровне предприятий.
Пример: выявить распределение между цехами продукции, идущей на внутреннее потребление, и общие объемы выпускаемой продукции, если заданы параметры прямых затрат и конечного продукта.
Рассмотрим особенности методики экономического анализа применительно к изучению спроса на товар.
Прогнозирование спроса может осуществляться различными методами, в частности можно выделить три основные группы: методы экономико-математического моделирования (экстрополяционные методы), нормативные методы, методы экспертных оценок.
Методы простой (формальной) экстраполяции заключаются в перенесении на будущий период прошлых и настоящих тенденций в развитии товарно-групповой структуры спроса на базе анализа динамического ряда.
Для экстраполяции информацию о динамике рынка представляют в той или иной форме - графической, статистической, математической, логической. В любом случае считают, что экономическим процессам присуща «инерция» или обязательное продолжение направления их течения в ближайшем будущем. Экстраполяции требуют от исследователя рынка крайней осмотрительности. Мало изучить прошлые тенденции рынка - необходимо принять в расчет новые условия и факторы, которые не были характерны для прошлого, но возможно появятся в будущем. Одновременно необходимо избавляться от учета факторов и обстоятельств, которые потеряли свою актуальность и уже не оказывают влияния на ход развития событий на данном рынке.
Данный метод достаточно прост и доступен, однако использование его целесообразно только на такой период, в котором маловероятно изменение тенденций, то есть на краткосрочный, и для укрупненных товарных групп.
К методам простой экстраполяции относятся и расчеты эластичности спроса в зависимости от изменения какого-либо фактора.