double arrow

Логарифмическая амплитудная частотная характеристика. Найдем асимптотические прямые логарифмической амплитудной частотной характеристики

.

Найдем асимптотические прямые логарифмической амплитудной частотной характеристики. В области w < 1 . В области w > 1 L2 = 20 lg (k / T)

Прямая L1 пересекает ординату в точке с координатами lgw = 0 , L1 = 20 lg k , абсциссу – в точке с координатами lgw = lg(1 / k) , L1 = 0 . Cледует учесть, что k > 1 и потому lg(1 / k) – число отрицательное. Прямая L2 параллельна оси абсцисс, пересекает ординату в точке lgw = 0, L2 = 20lg(k /T) . Прямые L1 и L2 пересекаются в точке с абсциссой lgw = lg(1 /T) . График представлен на рис. 3.6.

           
 
   
     
 
 


 
 


 
 


0

Рис. 3.6. Асимптоты ЛАЧХ

реального дифференцирующего звена.

Чтобы найти переходную функцию, в операторном уравнении заменим X(p) на 1/ p:

.

Таблица преобразований Лапласа указывает, что

.

Значит, переходная функция имеет вид

.

В момент t = 0 h(0) = k /T. По мере увеличения t, функция h (t) экспоненциально уменьшается до нуля. Напомним: в идеальном дифференцирующем звене переходная функция имеет вид импульса.


Сейчас читают про: