Числовые и структурные мутации кариотипа и фенотипические аномалии животных

Крупный рогатый скот. В кариотипе его содержится 60 хромо­сом. Впервые их подсчитал Краллингер в 1927 г. Обнаружены разные формы числовых и структурных аномалий кариотипа, которые сочетаются с нарушением плодовитости, эмбриональной смертностью, интерсексуальностью, злокачественными процесса­ми (лейкоз, саркома и др.), врожденными уродствами и некото­рыми генетическими аномалиями обмена веществ, болезнями

животных.

Числовые аномалии кариотипа (анеуплоидия). Числовые аномалии хромосом относят к вновь возникающим мутациям. Однако имеются исследования, которые показывают, что может быть семейная предрасположенность к анеуплоидии. Так, Герцог, Хен и Олишлегер при описании шести случаев трисомии по 17-й хромосоме (новой форме трисомии у крупного рогатого скота), сочетающейся с синдромом общего недоразви­тия телят (нанизм), гидроцефалией, микрофтальмией, аномалия­ми сердца и крипторхизмом, указывают на генетическую пред­расположенность к нерасхождению хромосом.; С. Г. Куликова (1991) обнаружила трисомию по 19-й паре хромосом, которая ассоциировалась с прогнатией нижней челюс­ти у теленка (рис. 58).

Гаметы с трисомией, моносомией, нуллисомией и полисо-мией обычно вызывают летальный исход уже на ранних стадиях эмбрионального развития и являются продуктом нарушения спермио- или овогенеза у носителей транслокаций. После рож­дения наблюдают числовые нарушения только по мелким ауто-сомам и половым хромосомам.

Полиплоидия. Увеличение числа наборов хромосом — полиплоидию наблюдали как в соматических, так и в половых клетках в мозаичной форме, т. е. как определенный процент клеток с аномальным набором хромосом.


Р«. 58. Трнсомия щ• W-Й^ромосоме у чуш,»*, р„гатого «^ (KEG-окряска хромосом)

Полностью (100 %) полипловдные эмбрионы у крупного оо-гатого скота и других видов животных, £ исключ^ием ^таи отмирают на ранних стадиях онтогенеза. Поли^вдию обн^у' живали в бластоцитах телок, забитых через 1™Тд£»й по?лё случки. И. Л. Голвдман и др. отмечали возрастание полижи дни у крупного рогатого скота, больного лейкозов ПодХьш болгарских ученых, бычки с высоким уровней? соматической полиплоидии во взрослом состоянии покажи кТини^еск^^кад тину лейкоза. По мнению ученых, подбор жи™^ c^rSL стабильности кариотипа может способствов^ь эфф^кти^и мероприятий, направленных на искоренение лейкоза у крупного рогатого скота.

Привлекает внимание работа Г. К. Исаковой, В. И. Евсикова, Д. К. Беляева (1976) на норках. В ней они показали, что 11,9 % имплантированных эмбрионов имеют триплоидию, мозаицизм 2п/3п или 2п/4п. Анализ полиплоидии в сперматогенном эпите­лии самцов норок с неудовлетворительной воспроизводительной характеристикой показал статистически достоверное повышение частоты полиплоидных клеток по сравнению с соответствующим показателем у животных с нормальной плодовитостью (5,9 и 9,6 % соответственно).

Анализ полиплоидии в костном мозге самок и самцов с раз­личной воспроизводительной характеристикой также показал статистически достоверные различия по уровню полиплоидии: частота полиплоидных клеток у самок и самцов с нормальной плодовитостью составила 0,5 и 0,7 % соответственно, у живот­ных с неудовлетворительной воспроизводительной характеристи­кой (давших в приплоде в 2 раза меньше телят) — 0,9 и 1,4 %.

Высокий процент полиплоидных клеток наблюдали у крупно­го рогатого скота с раздвоенным крупом — доппельленднеров с врожденным пояснично-крестцовым уродством телят, где часто­та полиплодии была выше 10 % (максимально 40 %) (А. И. Жи-гачев, 1979; Герцог, Хен, Файнас, 1983).

Pec. 59. Трянслокашш мехцу 1-й н 29-й аутосомамн

Структурные мутации хромосом. Транслокации. Наибольшее количество исследований у крупного рогатого скота проведено по изучению частоты и влияния на плодовитость цент­рического слияния — транслокации м]ежду 1-й и 29-й аутосомами (рис. 59). Эта аберрация обнаружера'в молочных, мясных и ком­бинированных породах во многих странах мира, в том числе у голштино-фризской (США, Англия), немецкой черно-пестрой (Германия), айрширской (Швеция), симментальской (Швейца­рия, Германия, Австрия, Венгрия, Россия, Югославия, Новая Зе­ландия и др.), монбельярдской (Франция), швицкой (США и дру­гие страны), шароле (Франция), лимузин (Франция, Англия). Еще в 1977 г. насчитывали 28 пород, в которых была обнаружена транслокация 1/29 хромосом, а к 1991 г. уже было 50 пород.

Частота транслокаций при обследовании пород была неодина­ковой и составила у швицкой, айрширской пород — 12,8 %, у симментальской в Англии — 4,8, в бывшем СССР — 5 % у быков на племпредприятиях, 10 — у коров и 18 — у ремонтных быков (А. И. Жигачев и др.), у шароле в Англии — 12,8, у лимузинов во Франции — от 4 до 14 %.

Транслокация 1/29 хромосом снижает плодовитость крупного рогатого скота, по отдельным расчетам, на 3,5—10 % и выше. Причины снижения плодовитости связаны с тем, что у гетерози­готных носителей робертсоновской транслокации образуются га­меты о несбалансированным набором хромосом. Так, при носи-тельстве транслокации 1/29 хромосом возможно образование шести типов гамет. Из них 1-й и 2-й типы — это гаметы с избытком, а 4-й и 5-й — с недостатком генетического материала. Использование производителя с кариотипом 2n=59, XY Т 1/29 на коровах с нормальным набором хромосом 2п=60, XX может привести к формированию нежизнеспособных эмбрионов с три-сомией и моносомией по 1-й и 29-й аутосомам. Такие же резуль­таты возможны и при других вариантах скрещиваний.

Коровы — носители транслокации 1/29 хромосом, по данным Густавссона, имеют более низкую молочную продуктивность, поэтому их раньше выбраковывают.

Во многих странах в законодательном порядке запрещено ис­пользовать быков — носителей транслокации 1/29 хромосом на станциях искусственного осеменения. Приняты ограничения или требования о цитогенетической аттестации при импорте и экс­порте животных или их гамет.

Кроме транслокации у крупного рогатого скота описаны центрические слияния между другими парами аутосом (табл. 48).

48. Типы центрических слияний (транслокаций)

между различными парами аутосом у крупного рогатого скота

(по Густевссону, с нашими дополнениями)

Пара аутосом, вступившие в центрические слияния Порода Страна
1/29 Мозаика 13/21/норма 11/12/15/16, или 13/21, или 14/20 7/11/20/25 5/6/15/16 или 6/16 Разные Голштино-фризская Симментальская Белая аквитанская и лимузин Декстерская Разные Венгрия Новая Зеландия, Англия, Венгрия Франция США

Продолжение

Пара аутосом, вступившие в центрические слияния Порода Страна
2/4 Британская фризская Англия
27/29 Гернзейская Канада
1/25 Симментальская Германия
3/4 Лимузин Франция
8/9 Швицкая Швейцария
25/27 Альпийский скот »

Сведений о влиянии этих типов слияний на фенотип накоп­лено недостаточно, за исключением транслокации 25/27, которая снизила плодовитость животных. Рассмотрим на двух конкрет­ных примерах воздействие транслокаций 1/29 и 25/27 хромосом на воспроизводительную функцию коров. Так, итальянские уче­ные сравнивали показатели воспроизводительной функции и продуктивность коров — полусестер по отцу — носительниц транслокаций и нормальных особей серой альпийской породы по средним показателям. Швейцарские ученые такой же анализ провели на симментальской породе, при этом получили следую­щие результаты (табл. 49).

49. Число осеменений на зачатие (по Ценеру и др.)

Порода и кариотип Число осеменений Число стельных животных Индекс осеменений Разница
Серая альпийская        
2п=60, XX     1,18 0 16
2п=59, XX, Т 25/27     1,34  
Симментальская (шифр быка)        
Н2п=60, XX     1,51 0 IS
Н2п=59, XX, Т 1/29     1,66 U,lJ
2п=60, XX     1,51 0,12
2п=59, XX, Т 1/29     1,63

Для зачатия у коров — носительниц транслокации 25/27 хромо­сом требовалось большее количество осеменений, чем у их нормаль­ных полусестер. Число дней от отела до последующего плодотворно­го осеменения (сервис-период) у коров — носительниц транслока­ций было выше, чем у их нормальных полусестер (табл. 50).

50. Продолжительность сервис-периода

Порода и кариотип Число животных Сервис-период (дней) Разница (дней)
Серая альпийская      
2п=60, XX   75,5 9,9
2п=59, XX, Т 25/27   85,4  
Симментальская (шифр быка)      
Н2п=60, XX   74,7 23,7
Н2п=59, XX, Т 1/29   98,4  
2п=60, XX   106,0 6,5
2п=59, XX, Т 1/29   112,5  

Венгерский ученый Ковач (1982) указывает на то, что различия по степени влияния разных типов центрических слияний на воспроизводительную функцию могут обуслов­ливаться неодинаковым уровнем смерти несбалансированных гаплоидных клеток или эмбрионов. Эти различия также могут быть связаны с утратой центромерных участков хро­мосом, вступающих в транслокацию, или потерей их функ­циональной активности.

Кроме транслокаций по типу центрических слияний у круп­
ного рогатого скота обнаружены также реципрокные транслока­
ции и тандемного типа. Так, Хансен (1970) зарегистрировал тан-
демную транслокацию 1-й и 9-й хромосом у датского молочного
скота. Эта аберрация была связана с повышенной эмбриональ­
ной смертностью и снижением плодовитости животных пример­
но на 10 %. '

Герцог (1972) наблюдал тандемную транслокацгао 1-й и 7-й хромосом у животных немецкой красной породы с гипоплазией левой «f асти большого полушария мозга, расщеплением позво­ночника и сегментной аплазией спинного мозга.

Инверсии. Перицентрическая инверсия в 14-й паре хромосом обнаружена Попеску у нормандской породы, шароле и гернзеев. Аберрация заметно снижала плодовитость животных.

Интересные работы по изучению причин нарушения спермиоге-неза и плодовитости быков провел Кнудсен. При анализе гермента-тивного эпителия быков с уменьшенной плодовитостью ученый об­наружил у трех животных транслокации, а у восьми — инверсии. На микрофотографиях, изготовленных при помощи электронного мик­роскопа, в стадии пахитены была видна петля инверсии, а в стадии поздней анафазы мейоза был виден инверсионный мост, образовав­шийся из децентрической хромосомы. Ненормальное поведение хромосом первичных сперматоцитов во время мейоза вследствие инверсии было причиной бесплодия быков.

Делеции, нехватки, поломки хромосом. Утраты средних участ­ков хромосом (делеции) и концевых участков (нехватки) вызыва­ют обычно летальный эффект на ранних стадиях онтогенеза. Их находят также у животных с различной патологией.

Нередко в кариотипе обнаруживают поломки хромосом — хроматидные и хромосомные разрывы с образованием фрагмен­тов генетического материала. Из множества работ по данному вопросу следует выделить исследования Хелнан (1982), который показал, что мелкие делеции или вторичные перетяжки хромо­сом и изохроматидные разрывы, как он затем их назвал, насле­дуются и имеют связь с хромотой у крупного рогатого скота вследствие тазобедренных артритов.

Высокая частота вторичных перетяжек обнаружена и в наших исследованиях (А. И. Жигачев и др., 1983) у отдельных живот­ных с врожденными аномалиями и у некоторых быков зарубежного происхождения. Герцог, Хен и Рикк (1977) при обследова­нии телят черно-пестрой немецкой породы, больных паракерато-зом, установили, что у их отцов и матерей число хромосомных разрывов аутосом было достоверно выше (11,1 и 9,5 %), чем в среднем у взрослых животных (1,4 %). Авторы предлагают ис­пользовать число хромосомных разрывов как маркер гетерози-готности по наследственному паракератозу.

Высокую частоту хромосомных разрывов обнаружили у жи­вотных, пораженных лейкозом. Делеции, затрагивающие поло­вую Х-хромосому, наблюдали в кариотипе коров с низкой опло-дотворяемостью.

В наших исследованиях у коров с многократными перегулами также отмечены повышенная частота разрывов хромосом и дру­гие аберрации по сравнению с их сверстницами, которые опло­дотворялись после первого осеменения.

Из цитированных работ видно, что структурные изменения хромосом — это дополнительная информация о роли генотипа в патологии животных. Вместе с тем возникновение разрывов хро­мосом может быть индуцировано вирусами и другими тератоген­ными факторами, что необходимо учитывать при цитогенетичес-ком анализе. Так, делеции, нехватки и пробелы хромосом с высокой частотой отмечены Т. В. Богачевой при анализе влия­ния на генетический аппарат быков супердоз витаминов А и D.

Хромосомные аномалии могут широко распространиться в породе через производителей, используемых в воспроизводстве, особенно если их спермой осеменяют коров племенных заводов, которые продают ремонтных быков на племпредприятия по ис­кусственному осеменению. Из этого следует вывод о необходи­мости цитогенетического контроля за распространением хромо­сомных аномалий в скотоводстве и браковки животных с нару­шением кариотипа.

Свиньи. Нормальный кариотип свиньи состоит из 38 хромо­сом. Впервые его описал Краллингер (1931).

У свиней наблюдаются различные формы аберраций. Наибо­лее часто у них обнаруживают реципрокные транслокации между различными парами аутосом (рис. 60). Анализ показал, что реци­прокные транслокации снижают плодовитость свиней (табл. 51), а также продуктивные качества (среднесуточный прирост массы, признаки мясности и др., табл. 52).

Общее число реципрокных транслокаций у свиней более 20, они снижают жизнеспособность потомков от 25 до 50 %.

Причина уменьшения плодовитости у носителей транслока­ций — нарушение мейоза. В процессе мейоза у животных — но­сителей транслокации образуются гаметы с несбалансированным набором хромосом, которые участвуют в оплодотворении. Так, у четырех гетерозиготных хрячков и свинок — потомков хряка

Рис. 60. Транслокация между 13-й н 14-й хромосомами свиньи (но Хагельдорну и др.)

51. Частота вовлачания хромосом свинай в спонтанные раципрокные

транслокации

Хромосома Число транслокаций Транслокации
1-Я   гср (1р • 6q+), rcpjlp-; I4q+), гср+(1р-; 16р+), rep (lq; 15q), rep (Iq; 17q+), rep (lq+; 14q-), rep (lq+;
2-я   7q), rep (lp-; 8ql
3-я 4-я   rep (3p+; 7q~) rep (4q; 14p), rep (4q+; 13q), rep (4q; 15p+)
5-я   + rcp (5q; 8q+), rep (5p~; 14p+)
6-я 7-я 8-я 3 4 rep (6p; 15a), rep (6p; 14q~), rep (lp-; 6q+) rep (7q; llq), гср (7р*; 13q~), гср (Зр^; 7~), rep ■ Oq; 7q). rep (lp. 8q+)
9-я 10-я 1 0 rep (9p+; llq")
. 11-я 12-я 3 0 rep (llp+; 15q~), rep (7q~; llq+), rep (9p+; llq-) ^
13-я   rep (llp+; 15q-), rep Qq"; llq+), rep (9p+; llq-)
14-я   rep (13q^; 14q), rep (lp+; I4q-), rep (4p+; 14q-), rep (lq; 14q), rep (4q~; 14p+), rep (5p~; 14p)
15-я 16-я 1 Т   rep (llp+; 15q~), rep (15q+; 16q"), rep (16q+; I7q") rep (lp; {6p), rep (lSq*; I6q-), rep (^q^; 17q~)
17-Я   rep (lq; 17q+), rep (16q+; 17q~)

52. Срввнение снижения воспроизводительной способности

хряков-носителей реципрокных транслокаций и эмбриональной

смертности у их потомстве

Транслокация Снижение размера помета, % Частота несбалансированных кариотипов, % Эмбриональная смертность, %
гср (lip"1"; 15q-) rcp(13q-; 14p+) rep (4q"; 14p+) ГСР (9p+; llq-) 34 42 49 50 10,6 30,5 38,8 29,9 37,2 68,8 65,5 67,7

шведской йоркширской породы, гетерозиготного по транслока­ции (13q~; 14q+), на стадии диакинез — метафаза I наблюдали 17 бивалентов, по одному квадриваленту. У свинок наблюдали хромосомы с кольцевой конфигурацией, что характеризует реци-прокную транслокацию. У хрячков кольцевую конфигурацию на­блюдали примерно в 20 % клеток на стадии диакинез — метафа­за I. Образование квадривалентов приводит к формированию несбалансированных гамет на стадии метафазы II, что является причиной нарушений процессов эмбриогенеза после оплодотво­рения. Получены четкие доказательства участия гамет с несба­лансированным кариотипом в оплодотворении, что свидетельст­вует о неэффективности или отсутствии презиготического отбора (элиминации гамет с несбалансированным кариотипом до опло­дотворения).

Исследовали предимплантационные эмбрионы, полученные после случки гетерозиготных по реципрокной (13q~; I4q+) транслокации хряков с 10 нормальными свинками. В 36 карио-типированных эмбрионах 14 имели нормальный сбалансирован­ный набор хромосом, 11 — сбалансированный, но гетерозигот­ный по транслокации, 11 — несбалансированный. В последнем случае у эмбрионов кроме структурной перестройки — трансло­кации были выражены и изменения числа хромосом в кариоти-пе — трисомия или моносомия как следствие нарушения их рас­хождения в мейозе.

Во втором варианте исследования случали хряка с нор­мальным набором хромосом с 10 гетерозиготными свинками. Цитогенетический анализ проведен у 33 эмбрионов. Из них 10 оказались с нормально сбалансированным кариотипом, 14 гетерозиготных сбалансированных, 9 имели несбаланси­рованный набор хромосом. В третьем варианте хряка случали с тремя нормальными свинками. В результате анализа выявлено 17 нормальных сбалансированных и 12 сбалансированных, но гетерозиготных эмбрионов. В четвертом варианте после случки нормального хряка и четырех гетерозиготных свинок изучено 17 эмбрионов, из которых 5 имели нормальный кариотип, 10 оказались гетерозиготными сбалансированными и 2 дегенерированными. В последнем варианте гетерозиготного хряка случали с гетерозиготной свинкой. Из четырех про­анализированных эмбрионов 2 имели сбалансированный с гетерозиготной формой транслокации кариотип и 2 эмбриона были дегенерированные.

Эмбриональная смертность, вычисленная по числу желтых тел и живых имплантированных эмбрионов, у гетерозиготных сви­нок, слученных с нормальными хряками, а также у нормальных и гетерозиготных свинок, слученных с гетерозиготными хряками, составила соответственно 72,3; 68,0; 85,5 %. Таким образом, у хряков и свинок — носителей транслокации хромосом наблюда­ются нарушения процессов мейоза и гаметогенеза. Такие спер-мии и яйцеклетки, участвуя в оплодотворении, дают нежизне­способных эмбрионов, что выражается в резком снижении коли­чества поросят в пометах.

Рещргрокную транслокацию Т (llp+; 15q~) в гетерозиготном состоянии обнаружил Кинг у двух хряков — отца и сына — со сниженной на 56 и 34 % оплодотворяющей способностью. Эта транслокация в сбалансированной форме обнаружена у 41 % живых потомков сына. Несбалансированный кариотип выявлен у 11 % эмбрионов, изученных в период от 10-го до 88-го дня беременности. Эти эмбрионы, несомненно, погибают. 100%-ную эмбриональную смертность наблюдали Бойтерс и др. в потомст­ве при использовании хряка — мозаика по реципрокной трансло­кации между 6-й и 15-й хромосомами. Кариотип этого животно­го был 38, XY/38, XY+ (6q+; 15q~). Высокую степень смертнос­ти, включая мертворожденных поросят и потомков с врожденными уродствами, зарегистрировали Попеску и Легатт у хряка, в кариотипе которого обнаружено 24 % клеток со струк­турными перестройками.

Подтверждением того положения, что снижение плодовитости у свиней может быть связано с нарушением генома, является сообщение Фогта и др. Два хряка-брата, дающих потомство с 50%-ным уменьшенным размером помета, в сравнении с други­ми хряками и теми же свиноматками оказались миксоплоида-ми - 37, XY- 18/38, XY/39, XY, +18 и 37, XY, - 18/38, XY. При анализе кариотипа их потомков у двух свиней-дочерей с пониженной плодовитостью был обнаружен аномальный набор хромосом.

Норби с соавт. при анализе бластоцист у свиней в 10' % случаев из 38 обнаружили количественные и структурные анома­лии, в их числе 4 триплоида, 3 тетраплоида, 1 диплоид/триплоид и одна делеция. При изучении 13 хряков с пониженной плодо­витостью и 100%-ной эмбриональной смертностью потомства Бойтерс установил, что основная причина нарушения эмбриогенеза — аномалии кариотипа: транслокации, палочковидные хро­мосомы, которые наблюдались в 25 % из 40 % эмбрионов, со­зревших до 25 дней.

В исследованиях М. Л. Кочневой и Н. А. Осиповой (1995) показано увеличение соматической хромосомной нестабильности у поросят с врожденными аномалиями и у свиноматок с низкой

плодовитостью.

Цитогенетический анализ у свиней дал возможность изучить связь нарушений плодовитости с аномалиями в системе половых хромосом. Так, на метафазных препаратах поросят-интерсексов был обнаружен химеризм XX/XY и XX/XXY. Такая же аномалия хромосом в лимфоцитах найдена у плодовитой свиноматки (среднее число поросят в один помет — 14), у которой, по дан­ным Кристенсена, 24 % клеток имели половые хромосомы XY, остальные содержали ХХ-хромосомы. У свиней обнаружена ано­малия кариотипа, сходная с синдромом Клайнфельтера у челове­ка и ранее описанная на других видах (2n-39,XXY). Для характе­ристики спермиогенеза у этого животного исследовали суспен­зию эпидидимальных клеток и семенники. В содержимом эпидидимуса спермин обнаружены не были. Гистологический анализ, проведенный Ханкоком, показал отсутствие спермато-генного эпителия.

У свиней зарегистрировано рождение поросят с одной поло­вой хромосомой 37, ХО, что соответствует синдрому Тернера у

человека.

Значительное количество цитогенетических исследований проведено у свиней истинных и псевдогермафродитов. При этом в разных тканях (кровь, кожа, костный мозг) обнаружены раз­личные хромосомные наборы, в том числе нормальные, химе­ризм по половым хромосомам, иногда в сочетании с трисомией или моносомией - 38, ХХ/39, XXY; 37, ХО/38, ХХ/38, XY, от­дельно трисомия 39, XXY.

Представляют интерес сообщения Михельмана и соавт. о раз­личиях частот структурных и морфологических изменений хро­мосом в группах племенных хряков и свиноматок в сравнении с откормочными выбракованными животными. В первой группе структурные изменения обнаружены в 17,9 %, во второй — в 13,7 и в третьей —в 20,7 % метафаз. Морфологические изменения хромосом наблюдали соответственно в 0,58; 0,61 и 0,72 % мета­фаз. Аналогичные результаты получены и у крупного рогатого скота. Это указывает на то, что снижение плодовитости и болез­ни как основные причины выбраковки животных связаны не только с действием факторов внешней среды. Первичная причи­на нарушений функций организма может быть связана с измене­ниями в генотипах животных.

Овцы. Нормальный кариотип овец состоит из 54 хромосом, что впервые указано советским генетиком Живаго (1931). У овец, как и у других видов животных, обнаружены различные виды аберраций хромосом. Так, в Новой Зеландии, в стране с развитым овцеводством, наблюдали три типа* робертсоновской транслокации — между 5-й и 26-й, 8-й и 11-й, 7-й и 25-й хромосомами, получившими название Массей I, Массей II и Массей III. Однако, как показали Бруер и Чепман, плодовитость у животных была нормальной. Это объясняется естественной выбраковкой не сбалансированных по числу хромосом гаплоидных клеток еще до вступления их в оплодотворение. У овец описаны также отдельные варианты реципрокных транслокаций, которые сопровождались пони­женной плодовитостью животных.

В Институте экспериментальной биологии Казахстана уста­новлено, что у каракульских баранов в очень молодом и старом возрастах хромосомные аберрации в генеративной ткани встреча­ются значительно чаще, чем в среднем возрасте. Хромосомные аберрации были обнаружены у некоторых мертворожденных с врожденными аномалиями ягнят.

Лошади. Нормальный кариотип домашней лошади состоит из 64 хромосом. Точное число хромосом этого вида животных уста­новили Сасаки и Макино только в 1962 г. Количество цитогене-тических исследований у лошадей пока еще невелико, поэтому установить истинную частоту аберраций хромосом не представ­ляется возможным. Однако Виллер и Визнер (1981) считают, что по крайней мере 5—10 % всех зигот у лошадей, как и у других видов млекопитающих животных, могут содержать хромосомные аномалии. 90 % этих зигот отмирают на первой стадии беремен­ности.

Исследования кариотипа лошадей показывают, что наиболее часто у этого вида встречаются аномалии в системе половых хромосом, которые вызывают бесплодие у животных (табл. 53).

53. Классификация гоносомальных аберраций у лошади

Признак Цитогенетический статус (кариотип) Симптоматика Этиология/патогенез
Дисгене- 63, ХО с ати-   Периферическая ин-
зия яични- пичной Х-хро-   версия с последую-
ков мосомой   щей транслокацией
  63, ХО Нарушение цикла, руди- Простая моносомия
  синдром ментарные яичники, апла- вследствие нерасхож-
  Тернера зия или гипоплазия овоци- дений
    тов, гипо- или анеструс,  
    гипоплазия гениталий,  
    задержка роста  
  65, XXX   Простая трисомия
  синдром   вследствие нерасхож-
  сверхсамок   дений

Продолжение

Признак Цитогенетический статус (кариотип) Симптоматика Этиология/патогенез
  64, XY/63, ХО Переход к псевдогермафро- Мозаичность
  или 64, ХХ/63, дитарной феминизации  
  ХО Л  
  64, ХХ/64, Y Обычно без клинических Постзиготический
  женская химера нарушений химеризм
Дисгенсзия 65.XXY синдром Гипоплазия семенников, аплазия зародышевых Трисомия вслед­ствие нерасхождений
  Клайнфельтера гормональных клеток  
    (высокорослость)  
  64, ХХ/65, Повышенная агрессив- Мозаичность
  ХХУили64, ХХ/64, XY/65, XXY мозаика ность, высокая'прыгучесть  
    Трисомия вслед-
  Клайнфельтера,   ствие нерасхождения
  65, XYY син-    
  дром самцов    
  66, XXYY; 66, Переход к мужскому Тетра- или пентасо-
  XXXY псевдогермафродитизму мия вследствие нерасхождения
  66, XXYY; 66,    
  XXXY;67.    
  XXXYY;67, XXXXY    
  Комплексный    
  кариотип 64, ХХ/64, XY    
  мужской химеризм   Зиготический химеризм
Мужской псевдогер- 64, ХХтестику-лярные ■ Гипоплазия гонад, сте­рильность, аплазия заро- Гормональное нару­шение, нарушение
мафроди-тизм ХХ-герма-фродиты дышевых клеток, частично женские половые органы (тестикулярная феминиза- во время гипотала-мической фазы дифференциации
    ция), часто гипоплазия  
    пениса и крипторхизм  
  64, ХУтести-   Гормональное нару-
  кулярные XY-   шение, адренальное
  гермафродиты   сверхпродуцирова­ние эстрагенов, тес-
      тикулярная фемини-
      зация
  64, ХХ/65,   Тетрасомия вслед-
  XXY или 64,   ствие нерасхождения
  ХХ/64, XY/65,   Мозаичность
  XXY мозаика    
  Клайнфельтера  
  64, ХХ/65, XY Переход к тестикулярной Зиготический химе-
  тестикулярные дисгенезии ризм
  XX/XY-герма-    
  фродиты    

Признак Цитогенстичсский   Продолжение
Женский псевдогер-мафроди-тизм статус (кариотип) 64, XY овари-альные XY-гермафродиты 63, ХО/64, XY Симптоматика Гипоплазия яичников, сте­рильность вследствие отсут­ствия зародышевых кле­ток. Переход к овариаль-ной дисгенезии Эгиологкя/патогенез Гормональное нару­шение во время гипоталамической фазы дифференциа­ции
  мозаика Тернера   Мозаичность

Нарушения в системе половых хромосом, как показали Бруер с сотр. (1978), — общая причина стерильности у лошадей. При обследовании 7 бесплодных кобыл у 6 из них авторы обнаружили синдром Тернера (63, ХО); одна оказалась мозаиком (63, ХО/64, XX). Синдром Тернера выявлен и в наших исследованиях у двух бесплодных кобыл, используемых конноспортивными секциями Ленинградской области.

И£ структурных мутаций у лошадей описаны следующие: де-леция хромосомы второй пары у бесплодной кобылы; деления хромосомы тринадцатой пары у бесплодного жеребца американ­ской стандартбредной породы с аномальными спермиями; моза-ицизм по Х-хромосоме с делецией длинного плеча у жеребца с низкой степенью оплодотворения; аутосомная реципрокная транслокация в гетерозиготном состоянии у жеребца с нормаль­ной воспроизводительной системой; транслокация гоносомы и аутосомы у кобылы с такими же признаками, как при синдроме Тернера, и частичная трисомия одной аутосомы у жеребца с тяжелым клиническим эффектом; транслокация дистальной части длинного плеча Х-хромосомы на длинное плечо другой Х-хромосомы у кобылы, 64,X/t(X). Buoen с соавт. предполагают наличие изохромосом у двух лошадей. Еще одна структурная мутация выявлена в системе половых хромосом. Rayne с соавт. предполагают перицентрическую инверсию в Х-хромосоме у бес­плодной, моносомной по половым хромосомам кобылы.

Птицы. В нормальном кариотипе кур, цесарок и перепелок содержится 78 хромосом, индеек и уток — 80. Установлено, что причина большей части раннего отмирания эмбрионов кур — аберрации хромосом. Ялар и Фечхаймер считают, что, как мини­мум, 25 % гибели эмбрионов обусловлено аномалиями в карио­типе.

У эмбрионов обнаруживали структурные нарушения — транс-локации, изохроматидный разрыв и др. Наиболее часто выявля­ют гетерошюидные формы аномалий кариотипа — гагагоидию, тригагоидию, трисомию по аутосомным и половым хромосомам, мозаицизм.

В экспериментах Фечхаймера показано, что гаплоидные эмбрионы кур развивались на основе андрогенеза. Триплоидные клетки в 75 % случаев были результатом нарушений при образо­вании второго полярного тельца. Тетраплоидные клетки форми­ровались в основном за счет нарушения цитокинеза в митозе.

Ю. А. Эрматов и А. Ф. Яковлев установили возрастание час­тоты аберраций хромосом у эмбрионов, полученных от искусст­венного осеменения спермой, хранившейся 4 мес в заморожен­ном состоянии. Это указывает на необходимость цитогенетичес-кого контроля при разработке технологии замораживания спермы.

Для получения оплодотворенных инкубационных яиц важное значение имеют сроки совместного содержания петухов и кур. В эксперименте Попеску и Меррита (1977) установлено резкое снижение оплодотворенности яиц после 12 дней с момента от­садки петухов от кур, увеличение общего процента эмбрионов с аномалиями хромосом. Таким образом, при длительном нахож­дении спермиев в половом тракте у кур происходят патологичес­кие процессы «старения», приводящие к развитию аномальных эмбрионов. Это относится и к другим видам животных. Поэтому определение момента осеменения самок — одно из условий пло­дотворности зачатия.

При исследовании кариотипов кур в постэмбриональный пе­риод установлены различия между популяциями и линиями по частоте хромосомных аномалий (табл. 54).

54. Хромосомные аберрации в разных линиях кур (по Блому, 1974)

Лнння Число исследованных несушек Число несушек, унаследовавших одну или более хромосомных аберраций Доля дефектных иесушек, %
1-я      
2-я      
3-я      
4-я      
5-я      
6-я      
7-я      
8-я      
9-я      

По данным Фечхаймера, среди аномальных клеток у кур наи­более часто встречается гаплоидия. Цыплята мясных пород (бройлеры) имели в 7 раз больше гетероплоидных клеток, чем цыплята яйценоских пород. Причиной повышенной частоты хромосомных аномалий у кур мясного типа могут быть непра­вильные овуляционные периоды. Установлено, что первое мейо-тическое деление происходит у них на 2 ч раньше овуляции, а второе — при оплодотворении.

Из приведенных материалов следует вывод: цитогенетический анализ можно использовать в селекции птиц для браковки кур и петухов с хромосомными аномалиями. Это позволит повысить выводимость птицы.

Контрольные вопросы. 1. Что включают в себя понятия генетические, наслед-ственно-средовые, экзогенные аномалии? 2. Каков ход генетического анализа при простом аутосомном рецессивном типе наследования аномалии? 3. Каковы основные правила наследования аутосомно-рецессивных и аутосомно-доминант­ных аномалий? 4. В чем заключаются особенности наследования сцепленных с Х-хромосомой аномалий? 5. Что входит в понятие «мультифакториальное насле­дование» и каковы его особенности? 6. Что понимают под терминами «пенет-рантность» и «экспрессивность»? Какова их роль при наследовании аномалий? 7. Какие примеры генетических аномалий у крупного рогатого скота свиней, овец и лошадей вы знаете? 8. Как прилагается закон гомологических рядов в наследственной изменчивости для изучения генетических аномалий у животных? 9. Каково распространение аномалий хромосом у крупного рогатого скота? Какие аберрации наиболее часто встречаются у этого вида? 10. Каков спектр аберраций хромосом, обнаруженных у свиней? 11. Какие аберрации хромосом часто служат причиной бесплодия кобыл и жеребцов? 12. В чем особенности спектра аберра­ций хромосом птиц?


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: