Понятие о фазовой плоскости

Рис.29

Рис.28

Рис.27

Сила , как видим, стремится вернуть точку в равновесное положение О, где ; отсюда и наименование «восстанавливающая» сила. Примером такой силы является сила упругости. Коэффициент c пропорциональности называется жесткостью упругого элемента.

Найдем закон движения точки М. Составляя дифференциальное уравнение движения получим

.

Деля обе части равенства на т и вводя обозначение

,

приведем уравнение к виду

.

Уравнение представляет собою дифференциальное уравне­ние свободных колебаний при отсутствии сопротивления. Реше­ние этого линейного однородного дифференциального уравнения второго порядка ищут в виде x=ent. Полагая x=ent, получим для определения п так называемое характеристиче­ское уравнение, имеющее в данном случае вид п2 + k2 = 0. Поскольку корни этого характеристического уравнения являются чисто мнимыми (), то, как известно из теории дифференциальных уравне­ний, общее решение имеет вид

,

где C 1 и С 2 - постоянные интегрирования. Если вместо постоянных C 1 и С 2 ввести постоянные а и , такие, что , , то мы получим или .

Это другой вид решения, в котором постоянными интегрирования являются а и . Им удобнее пользоваться для общих исследований.

Скорость точки в рассматриваемом движении равна

.

Колебания, совершаемые точкой по закону называются гар­моническими колебаниями.

Всем характеристикам этого движения можно дать наглядную ки­нематическую интерпретацию. Рассмотрим точку В, движущуюся равномерно по окружности радиуса а из положения В 0 определяемого углом (рис.28).

Пусть постоянная угловая ско­рость вращения радиуса ОВ равна k. Тогда в произвольный момент времени t угол и про­екция М точки В на диаметр, перпендику­лярный к DE, движется по закону , где х=ОМ, т.е. совер­шает гармонические колебания.

Величина а, равная наибольшему откло­нению точки М от центра колебаний, назы­вается амплитудой колебаний. Величина называется фазой колебаний.

Величина k, совпадающая с угловой скоростью вращения радиуса ОВ, показанного на рис.15 называется круговой частотой колебаний.

Промежуток времени Т (или ), в течение которого точка совер­шает одно полное колебание, называется периодом колебаний.

По истечении периода фаза изменяется на . Следовательно, должно откуда период

.

Величина , обратная периоду и определяющая число колебаний, совершаемых за одну секунду, называется частотой колебаний

.

Отсюда видно, что величина k отличается от Т только постоянным множителем . В дальнейшем мы обычно для краткости частотой колебаний будем называть величину k.

Значения а и определяются по начальным условиям. Считая при t =0 , получим и . Отсюда, складывая сначала квадраты этих равенств,а затем деля их почленно, найдем:

.

Отметим, что свободные колебания при отсутствии сопротивления обладают следующими свойствами: 1) амплитуда и начальная фаза колебаний зависят от начальных условий; 2) частота k, а следова­тельно, и период Т колебаний от начальных условий не зависят.

Влияние постоянной силы на свободные колебания точки. Пусть на точку М, кроме восстанавливающей силы F, направленной к центру О, действует еще постоянная по модулю и направлению сила Р (рис.29). Ве­личина силы F по прежнему пропорциональна расстоянию от центра О, т.е.

Очевидно, что в этом случае положением рав­новесия точки М будет центр О 1 отстоящий от О на расстоянии , которое определяется равенством или

.

Величину назовем статическим отклонением точки. Примем центр O 1 за начало отсчета и направим координатную ось О 1 х в сторону действия силы . Тогда , . В результате, составляя дифференциальное уравнение дви­жения и учитывая, что согласно равенству , будем иметь:

или .

Отсюда заключаем, что постоянная сила Р не изменяет характера колебаний, совершаемых точкой под действием восстанавливающей силыF, а только смещает центр этих колебаний в сторону действия силы Р на величину ста­тического отклонения .

Обычное описание движения системы с одной степенью свободы в виде зависимости координаты от времени не является единственно возможным. В ряде случаев, особенно при изучении нелинейных механических колебаний, определенными достоинствами обладает представление движения на фазовой плоскости.

Состояние системы в любой фиксированный момент времени определяется парой соответствующих значений и и может быть представлено изображающей (фазовой) точкой в плоской декартовой системе координат , , если откладывать по оси абсцисс координату , а по оси ординат – скорость . Такая плоскость называется фазовой.

В процессе движения рассматриваемой системы величины и изменяются и, соответственно, меняется положение изображающей точки на фазовой плоскости. Геометрическое место изображающих точек для данного движения называется фазовой траекторией.

Для построения фазовой траектории при заданном законе движения нужно путем дифференцирования образовать выражение скорости , а затем исключить время из двух уравнений: , .

Функция и описывает фазовую траекторию данного движения.

Фазовая плоскость особенно удобна для представления колебательных процессов, когда координата и скорость не выходят за известные пределы; поэтому вся картина движения даже в течение неограниченного времени занимает ограниченную часть фазовой плоскости.

Совокупность фазовых траекторий, которая описывает все возможные движения данной системы, называется фазовой диаграммой (фазовым портретом) данной системы.

Для свободных гармонических колебаний , а . Исключая из этих выражений время получаем

.

Это уравнение эллипса (рис.30). Его полуоси зависят от амплитуды и круговой частоты.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: