Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

БИЕНИЯ. УРАВНЕНИЕ БИЕНИЙ




Для практики особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте w1 ≈ w2. Получим уравнение результирующего колебания для этого случая.

Примем, что амплитуды складываемых колебаний равны А, а частоты: w1 = w, w2 = w + Δw, причём Δw « w. Начало отсчёта выберем так, чтобы начальные фазы обоих колебаний были равны нулю:

(30)

Складываем эти выражения, применяя формулу суммы косинусов.

Учитывая, что Δw « w и, пренебрегая Δw в сравнении с w, получаем:

.

Из анализа полученного выражения видно, что сомножитель, стоящий в скобках, меняется гораздо медленнее, чем второй сомножитель. И пока сомножитель в скобках совершит один полный цикл своих изменений, второй сомножитель сделает несколько колебаний.

Это даёт основание рассматривать результирующее колебание х как гармоническое с частотой w и амплитудой Аб, которая изменяется по периодическому закону:

.

Такие изменения амплитуды называются биениями.





Дата добавления: 2014-02-18; просмотров: 5086; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10202 - | 7796 - или читать все...

Читайте также:

 

35.173.47.43 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.001 сек.