Потребители реактивной мощности (РМ)

1) АД – асинхронные двигатели;

2) Силовые трансформаторы;

3) Сварочные трансформаторы;

4) Индукционные печи;

5) Газоразрядные лампы;

Величину получаемой электроприемником РМ характеризуют cosφ и tgφ:

; ;

Реактивная мощность, потребляемая АД зависит от величины подведенного напряжения U* = U / Uн и от нагрузки на валу Кз = Р / Рн.

Рис. 5.3. Зависимость tgφ АД от напряжения и загрузки.

Из графиков зависимости tgφ = f(Кз, U*) видно, что tgφ, (т.е. относительное потребление РМ) минимален при высокой загрузке двигателя и пониженном напряжении на его зажимах. Он возрастает при увеличении напряжения и при снижении нагрузки..

Статические характеристики узла нагрузки – это зависимость потребления активной и реактивной мощности в узле нагрузки от напряжения P = f(U), Q = f(U).

На рисунке 5.4. показан пример статических характеристик узла нагрузки с преимущественно асинхронной нагрузкой.

Рис. 5.4. Статические характеристиcки узла нагрузки.

5.5 Методы снижения потребляемой Р.М. (методы повышения cosφ )

Эти методы делятся на 2 группы:

а) без применения компенсирующих устройств (КУ):

- замена малозагруженных двигателей и трансформаторов на менее мощные;

- ограничение времени работы двигателей на холостом ходу;

- переключение малозагруженных двигателей с на Y для уменьшения напряжения на каждой обмотке;

- применение синхронных двигателей (СД) вместо АД;

- применение схемы выходного дня в эл.сетях предприятий (большую часть из трансформаторов отключают, а их небольшую нагрузку переводят на оставшиеся в работе трансформаторы, рис.5.5).

Рис. 5.5. Схема выходного дня.

Для схемы выходного дня нужна связь по низкому напряжению между ТП посредством ЛЭП 0,4 кВ.

б) Применение КУ позволяет разгрузить электропередачу от РМ и снизить в ней потери активной мощности. Максимальное снижение потерь имеет место при идеальной компенсации, когда мощность КУ Qк равна потребляемой РМ Qп (рис.5.6).

Рис. 5.6. Зависимость потерь активной мощности ΔР от мощности КУ.

Дополнительное снижение потерь активной мощности ΔР происходит также благодаря увеличению напряжения U2 на зажимах потребителя в результате компенсации РМ. Например предположим, что в электроустановке до компенсации:

tgφ = 1, cosφ = 0,7.

После компенсации tgφПК= 0,3.

а) Электроустановка питается по кабельной ЛЭП (индуктивное сопротивление мало):

x≈ 0 => U2ПК ≈U2ДК (ПК- после компенсации, ДК- до компенсации), т.е. компенсация РМ не привела к увеличению напряжения U2.

Потери активной мощности в сопротивлении электропередачи r:

(принято: Р = 1, U2 = 1);

;

Благодаря компенсации РМ потери активной мощности снизились с 2r до 1,09r.

б) Электроустановка питается по воздушной ЛЭП (индуктивное сопротивление велико), компенсация РМ привела к увеличению напряжения U2 на 5%, r = Const:

.

Увеличение напряжения U2 на 5%, привело к дополнительному снижению на 10% потерь активной мощности в ЛЭП. Это снижение объясняется снижением тока, протекающего по ЛЭП.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: