Линии второго порядка на проективной плоскости

Определение 1: линией второго порядка или квадрикой на проективной плоскости Р2 называется множество точек М(х1: х2: х3), имеющее в некоторой проективной системе координат уравнение вида:

(1)

где хотя бы один из коэффициентов отличен от нуля, и эти коэффициенты определены с точностью до числового множителя.

Замечание 1: формулы перехода от репера к реперу на проективной плоскости имеют вид:

(2)

где и .

Применяя их к уравнению (1), получим уравнение 2-ой степени относительно , то есть уравнение такого же вида относительно «новых» проективных координат.

Поэтому понятие линии 2-го порядка на проективной плоскости не зависит от выбора проективной системы координат.

Имеет место следующая теорема:

Теорема 1: с помощью надлежащего выбора проективной системы координат уравнение (1) любой линии 2-го порядка на проективной плоскости может быть приведено к одному из следующих пяти видов:

Определение 2: уравнения (3) – (7) называются нормальными уравнениями линии 2-го порядка.

Замечание 2: линия второго порядка на с уравнением (3) называется овальной, ей принадлежит бесконечное множество точек.

Замечание 3: так как проективные координаты точки одновременно не могут равняться нулю, то уравнение (4) определяет пустое множество точек, а саму линию условно называют нулевой.

Замечание 4: уравнение (5) равносильно совокупности двух уравнений и поэтому говорят, что линия второго порядка распадается на пару прямых.

Замечание 5: уравнению (6) удовлетворяют координаты единственной точки (0:0:1), но поскольку из него следует, что либо либо где , то линию с этим уравнением условно называют парой мнимых прямых, пересекаются в действительной точке (0:0:1).

Замечание 6: из уравнения (7) следует, что поэтому говорят, что линия с этим уравнением является парой совпавших прямых.

Замечание 7: на евклидовой плоскости линией 2-го порядка было названо множество точек, имеющих в некоторой прямоугольной декартовой системе координат Oxy уравнение: где хотя бы один из старших коэффициентов не равен нулю.

Дополняя евклидову плоскость несобственной прямой и переходя к однородным аффинным координатам по формулам , где для собственных точек, получаем уравнение:

После умножения обеих его частей на , получаем уравнение (1), то есть уравнение линии 2-го порядка на проективной плоскости в проективных координатах.

В частности, эллипс, гипербола и парабола с точки зрения проективной геометрии являются овальными линиями 2-го порядка, а мнимый эллипс – нулевой линией.

Теорема 2: прямая на проективной плоскости может:

1) иметь с линией 2-го порядка две различные общие точки;

2) иметь с ней две совпавшие общие точки;

3) не иметь с ней общих точек;

4) целиком принадлежать линии 2-го порядка.

Определение 3: во втором случае прямая называется касательной к линии 2-го порядка.

Параметрические уравнения прямой на имеют вид:

, (8)

где параметры и определены с точностью до числового множителя, а прямая проходит через точки и . Положив подставив выражения для , , в уравнение (1), получим уравнение вида

(9)

Это уравнение может иметь два различных действительных корня, не иметь действительных корней и быть тождественным. Получаются четыре случая, описанные в условии теоремы. Подставляя значения из (9) и в уравнения (8), найдем координаты точек пересечения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: