Основные этапы проектирования технологических процессов механической обработки

Проектирование технологических процессов состоит из следующих взаимосвязанных этапов: анализа исходных данных, технологи­ческого контроля детали, выбора типа производства, выбора заго­товки, выбора баз, установления маршрута обработки отдельных поверхностей, проектирования технологического маршрута изго­товления детали с выбором типа оборудования, расчета припусков расчета промежуточных и исходных размеров заготовки; построе­ния операций, расчета режимов обработки, технического нормиро­вания операций, оценки технико-экономических показателей про­цесса, оформления технологической документации.

Анализ исходных данных и технологический контроль чертежа и технических условий. При анализе исходных данных следует озна­комиться с назначением и конструкцией детали, подлежащей изго­товлению, техническими условиями ее изготовления и эксплуата­ции, программой выпуска деталей, а также с производственными условиями, в которых намечено выполнение процесса (оборудова­ние, транспортные средства и др.). Исходные данные предопреде­ляют принципиальное направление проектируемого процесса с целью обеспечения требуемого качества и эффективности при заданном масштабе выпуска.

В процессе анализа исходных данных технолог осуществляет технологический контроль чертежа и технических условий. При этом следует выявить пути улучшения технологичности конструк­ции детали, рассмотренные в гл. 4. Это позволит уменьшить трудо­емкость изготовления детали, снизить себестоимость ее обработки

Выбор типа производства. Тип производства выбирают, исходя из заданной программы выпуска путем расчета такта выпуска дета­лей по формуле (1.9). τ = 60 Ф д/ N, Ф д – действительный фонд времени в планируемом периоде (месяц, сутки, смена), Nпроизводственная программа на этот период, шт.

Если такт выпуска близок к ориентировочно установленной средней длительности основных операций обработки данной детали, то производство считают массовым. Если же такт выпуска значительно превышает длительность основных операций то детали изготовляют по принципу серийного производства с обработкой их производственными партиями. Размер производственной партии определяют, исходя из трудоемкости операций обработки, трудоемкости наладки оборудования на основных операциях, затрат незавершенного производства и других экономических и орга­низационных соображений.

Размер экономически выгодной партии определяют по формуле

,

где – сумма подготовительно-заключительного времени по всем операциям, мин; – сумма штучного времени по всем операциям, мин; К – коэффициент, учитывающий1 потери времени на переналадку оборудования (К = 0,04 относится к крупносерийному производству и К = 0,18 – к мелкосерийному).

Выбор исходной заготовки.

На выбор заготовки и метода ее по­лучения значительное влияние оказывают характеристика мате­риала, из которого должна изготовляться деталь, ее конструктив­ные формы и размер, программа выпуска.

Метод получения заготовки должен обеспечить наименьшую себестоимость изготовления детали……

Следует также иметь в виду, что при малой программе выпуска деталей расходы на изготовление специальной оснастки для заго­товительных процессов (проектирование и изготовление штампов, пресс-форми др.) не окупаются.Таким образом, выбор метода полу­чения заготовки должен быть обоснован экономическими расчетами себестоимости изготовления детали с учетом себестоимости полу­чения заготовки и себестоимости механической обработки.

При выборе литых заготовок и поковок помимо назначения припусков на обработку и допусков на размеры указывают также штамповочные или литейные уклоны, радиусы округлений, допу­стимые дефекты поверхностей, базовые поверхности для первой операции механической обработки и требования, предъявляемые к этим поверхностям, способы термической обработки заготовки и очистки ее поверхностей.

Для заготовок из проката и специальных профилей размеры устанавливают согласно ГОСТ, учитывая необходимые припуски на обработку.

Выбор технологических баз является основой построения тех­нологического процесса изготовления детали и имеет большое зна­чение для обеспечения требуемой точности обработки и экономич­ности процесса. Назначая технологические базы для первой и после­дующих операций обработки, следует руководствоваться следую­щими общими соображениями:

- установочная и направляющая базы должны иметь необходимую протяженность для обеспечения устойчивого положения заготовки при ее обработке;

- обрабатываемая заготовка должна иметь минимальные деформа­ции от действия силы резания, зажимной силы и от действия соб­ственной массы;

- в качестве технологической базы следует принимать поверх­ности, обеспечивающие наименьшую погрешность установки и исклю­чающие погрешность базирования.

На первой операции должны быть обработаны те поверхности, которые будут приняты за технологическую базу для последующей операции.

Так как технологической базой на первой операции будут черные (необработанные) поверхности, следует выбирать те по­верхности, которые допускают по возможности равномерное снятие припусков и достаточно точное взаимное расположение обрабаты­ваемых и не подлежащих обработке поверхностей.

Если все поверхности детали подвергают механической обра­ботке, то в качестве базы на первой операции следует выбирать поверхности с наименьшим припуском, чтобы при последующей обработке не получилось брака из-за недостатка припуска.

На второй и последующих операциях тех­нологические базы должны быть возможно точными по геометри­ческой форме и по шероховатости поверхности.

Рекомендуется, если это возможно, соблюдать принцип совме­щения баз, т. е. в качестве технологической базы принимать по­верхности, которые будут одновременно измерительной базой.

Если технологическая база не совпадает с измерительной, то воз­никает погрешность базирования (см. выше). Следует иметь в виду, что лучшие результаты по точности будут достигнуты в том случае, если технологической и измерительной базой служит конструкторская база.

Необходимо придерживаться принципа постоянства базы на ос­новных операциях обработки, т. е. использовать в качестве технологической базы одни и те же поверхности. Соблюдение этого принципа особенно важно, если измерительные базы при выпол­нении различных операций переменны и в связи с этим затрудни­тельно осуществить принцип совмещения баз. С целью соблюдения принципа постоянства баз в ряде случаев на деталях издают искус­ственные технологические базы, не имеющие конструктивного назначения (центровые гнезда валов, специально обработанные отверстия в корпусных деталях при базировании их на штифты и др.).

Если по условиям обработки не удается выдержать принцип постоянства базы, то в качестве новой базы принимают обработан­ную поверхность по возможности наиболее точную и обеспечивающую жесткость установки заготовки. Если вновь принятая база не является измерительной, то рассчитывают допуск на получае­мый размер с учетом появляющейся погрешности базирования и, если необходимо, ужесточают допуск на размер, определяющий положение новой технологической базы относительно измерительной базы.

Привыборе технологических баз следует оценить точность и надежность базирования, увязав их с производительностью тех­нологического процесса.

Установление маршрута обработки отдельных поверхностей. На начальной стадии разработки технологического процесса составляют перечень технологических переходов, которые могут быть применены для достижения конечной точности и шерохова­тости поверхности, проставленных на рабочем чертеже детали. Между рабочим чертежом и технологическим процессом изготовле­ния детали существуют тесные связи. Они, в частности, обусловлены тем, что каждому методу обработки соответствуют определенные достижимые точность получаемого размера и шероховатость по­верхности. Поэтому необходимый метод окончательной обработки поверхности подсказывается рабочим чертежом детали.

Выбор метода окончательной обработки облегчается использо­ванием точностных характеристик различных технологических методов (см. гл. 2). Но так как каждому методу обработки соответ­ствует некоторое оптимальное значение припуска, а общий припуск обычно превышает значение, допускаемое для этого метода, то можно определить и методы предшествующей обработки. Например, при обработке шейки вала до диаметра 50 h 8 при использовании в качестве заготовки проката последовательность технологических переходов такова: 1) черновое точение, 2) чистовое точение, 3) шли­фование? В данном случае переход чернового точения необходим для приближения формы и размеров заготовки к форме и размерам детали.

Зависимость структуры технологических переходов от вида исходной заготовки может быть показана и на следующем примере: если в исходной заготовке имеется отлитое или штампованное отверстие, то переход сверления исключен и обработка начинается с зенкерования или растачивания отверстия.

Содержание технологических переходов зависит от точности исходной заготовки. Если, например, для изготовления гладкого (не ступенчатого) вала используется калиброванный прокат, то то­карная обработка по наружному диаметру исключается и приме­няется только шлифование.

Рис. 6.2.

Из приведенных выше примеров видно, что конструктивные формы и точность исходной заготовки предопределяют содержание первого технологического перехода.

Определив первый и окончательный технологические переходы, устанавливают необходимость промежуточных переходов. Напри­мер, недопустимо при обработке отверстия по 7-му квалитету точ­ности после первого перехода (чернового растачивания отверстия) сразу применять чистовое развертывание, так как точность и ка­чество поверхности после чернового растачивания не обеспечат качественного выполнения чистового развертывания.

Получение конечной точности обрабатываемой поверхности может быть достигнуто путем применения различных технологиче­ских переходов. Например, при обработке отверстия с отклоне­нием Н 8 в заготовке из чугуна с предварительно отлитым отвер­стием конечными переходами могут быть либо развертывание 1 (рис. 6.2, нижний ряд), либо тонкое растачивание 2, либо протя­гивание 3. Первыми технологическими переходами могут быть черновое зенкерование 4, либо черновое растачивание 5, а про­межуточными — чистовое зенкерование 6, либо чистовое растачи­вание 7. На рис. 6.2 показана схема десяти вариантов обработки данного отверстия[1]. Из приведенного примера видно, что число возможных вариантов обработки данной поверхности может быть значительным, причем все они будут различными по эффективности.

На данном этапе разработки технологического процесса при­пуски и режимы обработки не рассчитывают. Поэтому при назна­чении состава технологических переходов следует использовать справочные данные о производительности и точности при различных методах обработки и рекомендуемые типовые технологические мар­шруты. Значительную помощь при этом может оказать ЭВМ.

При дальнейшей разработке маршрута обработки детали и от­дельных операций состав технологических переходов уточняется и корректируется. На последовательность технологических пере­ходов в значительной мере влияет требование обеспечения взаимной координации поверхностей деталей, указанное в рабочем чертеже. Решение этой задачи связано с правильным выбором баз при уста­новке заготовки на первой и последующих операциях, а также с рациональным назначением последовательности технологических переходов, если учесть, что наилучшая взаимная перпендикуляр­ность, параллельность и концентричность поверхностей достига­ются при их обработке с одной установки.

Определение последовательности технологических переходов при обработке отдельных поверхностей детали позволяет выявить необходимые этапы обработки (черновая, чистовая и отделочная) и является базой для формирования технологического маршрута изготовления детали и отдельных операций.

Проектирование технологического маршрута изготовления де­тали. Под технологическим маршрутом изготовления детали пони­мается последовательность выполнения технологических операций (или уточнение последовательности операций по типовому или групповому технологическому процессу) с выбором типа обору­дования. На этапе разработки технологического маршрута при­пуски и режимы обработки не рассчитывают, поэтому рациональ­ный маршрут выбирают с использованием справочных данных и руководящих материалов по типовым и групповым методам обра­ботки. Значительную помощь при этом может оказать ЭВМ.

Технологические маршруты весьма разнообразны и зависят от конфигурации детали, ее размеров, требований точности, про­граммы выпуска, однако при проектировании маршрута следует руководствоваться некоторыми общими соображениями. С методи­ческой точки зрения эта работа может быть представлена следую­щей примерной схемой.

1. Сначала выявляют необходимость расчленения процесса изготовления детали на операции черновой, чистовой и отделочной обработки. Эту работу выполняют с использованием разработок по установлению маршрута обработки различных поверхностей данной детали.

2. Операцию черновой обработки целесообразно отделить от чи­стовой, чтобы уменьшить влияние деформации заготовки после черновой обработки. Однако если заготовка жесткая, а обрабаты­ваемые поверхности незначительны по длине, то такое расчленение не обязательно.

3. Отделочная обработка, как правило, выполняется на конеч­ной стадии процесса. Но от этого положения в отдельных случаях приходится отступать. Например, если окончательная обработка поверхности связана с возможным отходом заготовок в брак, то эту операцию не следует выполнять последней, чтобы не иметь лишних затрат труда.

4. При формировании операций следует учесть, что определен­ная группа поверхностей потребует обработки с одной установки. К таким поверхностям относятся соосные поверхности вращения и прилегающие к ним торцовые поверхности, а также плоские поверхности, обрабатываемые в несколько позиций.

5. В самостоятельные операции выделяются обработка зубьев колес, нарезание шлицев, обработка пазов, сверление отверстий с применением многошпиндельных головок и др.

6. При формировании операций следует иметь в виду следующее: а) на первой операции необходимо обработать те поверхности, которые будут использованы в качестве установочных баз на вто­рой, а возможно и на последующих операциях механической обра­ботки; б) наличие термической или химико-термической обработки.

7. При формировании технологического маршрута устанавли­вается тип применяемого оборудования (станок токарный, фрезер­ный, сверлильный и т. д.).

8. Выполненная наметка технологического маршрута оформля­ется в виде операционных эскизов заготовок с указанием схемы их базирования и с выделением жирными линиями обрабатываемых поверхностей.

9. В маршрут технологического процесса включают опущенные второстепенные операции (обработку крепежных отверстий, снятие фасок, зачистку заусенцев, промывку и др.), а также указывают место контрольных операций.

После оценки принятых решений вносят необходимые кор­рективы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: