Обогащение сырья

Сырьё

Химическая промышленность характеризуется высокой материалоёмкостью произ­водства. На одну тонну готовой химической продукции расходуется, как правило, не­сколько тонн сырья и материалов. Отсюда следует, что себестоимость химической про­дукции в значительной мере определяется качеством сырья, способами и стоимостью его получения и подготовки. В химической промышленности затраты на сырьё в себестоимо­сти продукции составляют 60-70% и более.

От вида и качества сырья существенно зависит полнота использования производст­венных мощностей отраслей химической промышленности, производительность тепла, продолжительность работы оборудования, затраты труда и т.д. Свойства сырья, содержа­ние в нём полезных и вредных компонентов определяют применяемую технологию его обработки.

Виды сырья весьма разнообразны, и их можно разделить на следующие группы:

  1. минеральное сырьё;
  2. растительное и животное сырьё;
  3. воздух, вода.

1. Минеральное сырьё – полезные ископаемые, добываемые из земных недр.

Полезные ископаемые в свою очередь подразделяются на:

  • рудные (получение металлов) важные полиметаллические руды
  • нерудные (удобрения, соли, H+, OH-стекло и т.д.)
  • горючие (угли, нефть, газ, сланцы)

Рудное сырьё – это горные породы, из которых экологически выгодно получать ме­таллы. Металлы в нём находятся большей частью в виде оксидов и сульфидов. Руды цвет­ных металлов довольно часто содержат в своём составе соединения нескольких металлов – это сульфиды Pb, Cu, Zn, Ag, Ni и др. Такие руды называют полиметаллическими или комплексными. Непременной составной частью всех промышленных руд является FeS2 – пирит. При переработке некоторых руд получают наряду с металлами и другие продукты. Так, например, одновременно с Cu, Zn, Ni при переработке сульфидных руд получают и H2SO4.

Нерудное сырьё – это горные породы, используемые в производстве неметаллических ма­териалов (кроме хлоридов щелочных металлов и Mg). Этот вид сырья или непосредст­венно используется в народном хозяйстве (без химической переработки) или служит для того или иного химического производства. Это сырьё используют в производстве удобре­ний, солей, кислот, щелочей, цемента, стекла, керамики и т.д.

Нерудное сырьё условно делят на следующие группы:

  • строительные материалы – сырьё используется непосредственно или после механиче­ской или физико-химической отработки (гравий, песок, глина и т.д.)
  • индустриальное сырьё – используется в производстве без обработки (графит, слюда, корунд)
  • химическое минеральное сырьё – используют непосредственно после химической об­работки (сера, селитра, фосфорит, апатит, сильвинит, каменная и другие соли)
  • драгоценное, полудрагоценное и поделочное сырьё (алмаз, изумруд, рубин, мала­хит, яшма, мрамор и т.д.)

Горючее минеральное сырьё – ископаемые, которые могут служить в качестве топ­лива (угли, нефть, газ, горючие сланцы и др.)

2. Растительное и животное сырьё – это продукты сельского (земледелия, животноводства, овощеводства), а также мясного и рыбного хозяйства.

По своему назначению оно подразделяется на пищевое и техническое. К пищевому сырью относятся картофель, сахарная свекла, хлебные злаки и т.д. Химическая и другие отрасли промышленности потребляют растительное и животное сырьё, непригодное для пищи (хлопок, солома, лён, китовый жир, когти и т.д.). Деление сырья на пищевое и техниче­ское в некоторых случаях условно (картофель → спирт).

3. Воздух и вода являются самым дешёвым и доступным сырьём. Воздух – практически неисчерпаемый источник N2 и O2. H2O не только непосредственный источник H2 и O2, но и участвует практически во всех химических процессах, а также используется как раство­ритель.

Экономический потенциал любой страны в современных условиях в большей сте­пени определяется природными ресурсами полезных ископаемых, масштабами и качест­венной характеристикой их местоположений, а также уровнем развития сырьевых отрас­лей промышленности.

Сырьевые ресурсы современной промышленности очень разнообразны, причем с развитием новой техники, внедрением более эффективных методов производства сырье­вая база постоянно расширяется за счёт открытия новых месторождений, освоения новых видов сырья и более полного использования всех его компонентов.

Отечественная промышленность имеет мощную сырьевую базу и располагает запа­сами всех необходимых ей видов минерального и органического сырья. В настоящее время США занимает первое место в мире по добыче запасов P, каменных солей, NaCl, Na2SO4, асбеста, торфа, древесины и т.д. У нас одна из первых мест по разведанным зале­жам нефти и газа. И разведанные запасы сырья из года в год увеличиваются.

На современном этапе развития промышленности большое значение приобретает ра­циональное использование сырья, которое предполагает следующие мероприятия. Рацио­нальное использование сырья позволяет повысить экологическую эффективность произ­водства, т.к. стоимость сырья составляет основную долю в себестоимости химической продукции. В связи с этим стремятся использовать более дешёвое, особенно местное сы­рьё. Например, в настоящее время в качестве углеводородного сырья всё шире исполь­зуют нефть и газ, а не каменный уголь, этиловый спирт, полученный из пищевого сырья заменяют на гидролизный из древесины.

Всякое ископаемое сырьё после его добычи из земной коры, кроме полезной мине­ральной части, всегда содержит некоторое количество малоценных или бесценных, а ино­гда и вредных для данного производства примесей – пустой породы. Поэтому процесс по­лучения минерального сырья не ограничивается только выемкой его из месторождений. До поступления в производство сырьё подвергают такой обработке, чтобы его состав и свойства удовлетворяли требованиям данного технологического процесса. Такое измене­ние состава минерального сырья, заключающееся в увеличении концентрации в нём по­лезной части называют обогащением.

Обогащение полезных ископаемых, как правило, сложный и дорогостоящий процесс. Од­нако, не смотря на дополнительные затраты, связанные с обогащением, оно обеспечивает значительный эффект, определяемый:

1) возможностью расширения сырьевой базы за счёт комплексного использования сы­рья и вовлечения в эксплуатацию бедных по содержанию основного компонента минералов и руд.

2) более полное использование оборудования на химических предприятиях за счёт пере­работки высококонцентрированного сырья.

3) существенным улучшением качества готовой химической продукции.

4) значительной экономией транспортных средств, вследствие уменьшения перево­зок, приходящихся на долю пустой породы.

Обогащению могут подвергаться твёрдые материалы (например, горные породы) жидко­сти и растворы, а также газовые смеси.

В случае обогащения твёрдых материалов полученный продукт называют концен­тратом, а отходы – хвостами. В тех случаях, когда в сырье содержится несколько полез­ных составляющих, его делят на отдельные части (фракции), обогащенные тем или иным компонентом, т.е. из сложного сырья получают несколько концентратов, что позволяет более полно (комплексно) использовать сырьё.

Методы обогащения твёрдых материалов весьма разнообразны, они основаны на различии физических и химических свойств веществ, входящих в состав сырья, например, прочности, плотности, твёрдости, растворимости, магнитной проницаемости и т.д.

  1. Главная задача – комплексное использование сырья.

Извлекая из сырья основной продукт, сырьё обогащается по другим компонентам, кото­рые подчас являются более дорогими, чем основной продукт.

Например: производство цинка

ZnS →SO2 →H2SO4

↓ t°

ZnO (CuO, PbO, CdO, Au, Ag, РЗЭ, Pt)

↓ ↓ ↓

Zn Cu-Pb+Pt Cu-Cd+Pt

↓ ↓ ↓ ↓

Cu+Pt Pb+Pt Cd Cu+Pt → Cu

Au, Ag, Pt

  1. Уменьшение отходов производства

Отходы производства используются либо на самом производстве, либо используют на другие производства. Например, цементная промышленность использует шлаки (ме­таллы), сельскохозяйственная промышленность использует шлаки с фосфором. Ti, V и др. извлекают из металлургических шлаков. Из отходов производства сейчас выпускают ТНП.

  1. Использование «вторичного сырья»

Особенно это относится к металлургической и целлюлозно-бумажной промышленности. Используется металлолом, макулатура и т.д.

  1. Использование местного сырья

Это особенно приобретает значение при длинных перевозках, т.к. сокращение перевозок снижает себестоимость продукции.

  1. Замена пищевого сырья непищевым

Этиловый спирт не из картофеля, а гидролизный или из этилена. При синтезе синтетиче­ского каучука спирт как сырьевой продукт заменяют на бутан (из природного газа).

Основные методы обогащения твёрдых веществ:

1. Рассеивание (грохочение) основано на том, что минералы, входящие в состав сы­рья, имеют различную прочность, поэтому при дроблении менее прочные (хрупкие) мине­ралы дробятся на более мелкие зёрна, чем прочные (вязкие) материалы. Если после из­мельчения просеять такое сырьё через сито с отверстиями различного размера, то можно получить фракции, обогащённые тем или иным минералом.

2. Гравитационное разделение основано на различии скоростей осаждения частиц в жидкости или газе в зависимости от плотности или хрупкости этих частиц. Если осажде­ние производят в жидкости (чаще всего в воде), его называют мокрым гравитационным обогащением, если осаждение ведут в газе (чаще в воздухе), его называют сухим гравита­ционным обогащением.

3. Магнитная сепарация применяется для обогащения магнитновосприимчивых мате­риалов от немагнитных, а также для удаления стальных предметов, случайно попавших в руду; так отделяют магнитный железняк от пустой породы.

4. Флотационное обогащение основано на различной смачиваемости зёрен отдельных минералов водой. Частицы несмачиваемого (гидрофобного) материала не преодолевают силы поверхностного натяжения воды и остаются на её поверхности. Частицы смачивае­мого (гидрофильного) материала обволакиваются плёнкой жидкости и опускаются на дно аппарата. Несмачиваемый материал снимают с поверхности жидкости, отделяя от руды.

Жидкие растворы различных веществ концентрируют упариванием растворителя, вымораживанием, выделением примесей в осадок или в газовую фазу.

Газовые смеси разделяют на компоненты последовательной конденсацией, т.е. пе­реводят их в жидкое состояние при постепенном понижении температуры и сжатии. Этот метод основан на различии температур конденсации компонентов газовой смеси. В других случаях газовую смесь сначала превращают в жидкость, а затем последовательным испа­рением её разделяют на индивидуальные компоненты. Разделение газовых смесей осуще­ствляется также поглощением отдельных газов жидкостями (абсорбция) или твёрдыми веществами (адсорбция) с последующим выделением их из сорбентов в поглощенном виде.

А теперь перейдём к более подробному ознакомлению с теоретическими основами и технологиями процессов обогащения.

Как уже выяснили, первой стадией любого процесса обогащения твёрдых тел явля­ется стадия измельчения. В зависимости от размеров кусков исходного и измельчённого материала различают следующие классы измельчения:

Класс измельчения Размер кусков исходного материала, dн, мм Размер кусков измельчён­ного материала, dк, мм
Дробление a) крупное b) среднее c) мелкое Помол a) грубый b) средний c) тонкий d) коллоидный   1-5 0,1-0,05 0,1-0,04 <0,1   1-5 0,1-0,5 0,015-0,005 0,005-0,001 <0,001

По твёрдости измельчения материалы делят на твёрдые (твёрдость по Моосу 5-10) – это руды, породы, шлак; средней твёрдости (твёрдость 2-5) – известняк, каменная соль, уголь; мягкие (твёрдость <1) – глина, пластмассы, зерно.

Отношение диаметров кусков исходного и измельчённого материала dн/dк =i назы­вают линейной степенью измельчения, а отношение dн3/dк3 =i0 – объёмной степенью из­мельчения. Под dн и dк подразумевают размеры наибольших кусков. При измельчении крупных и средних кусков обычно i = 3-8, а для мелких i = 10-50 и более. При этом, чем прочнее измельчённый материал, тем меньше величина i.

Одним из важнейших технико-экономических показателей процессов измельчения твёрдых материалов является расход энергии для совершения работы измельчения. Если предположить, что измельчение тело является однородным, абсолютно упругим и делится по строго определённому геометрическому закону, то расход энергии должен быть про­порционален величине вновь образованной поверхности в измельчённом материале (по­верхностная гипотеза Риттингера 1867 г.)

Так, например, тело кубической формы с длиной ребра dн имеет поверхность Fн=6dн3. Разрежем этот куб на z маленьких кубиков с длиной ребра dк. Число этих кубиков будет равно dн3/dк3, а их суммарная поверхность Fx=6(d/d)=6dк2i0. Вновь образованная поверхность выражается формулой F=Fx–Fн=6d(i–1).

Принимая, что на образование единицы поверхности затрачивается работа Ау, получим выражение для работы на измельчение рассматриваемого тела

А=6Ауd(i–1)

Величина Ау теоретическому определению не поддается и находится опытным путем в каждом конкретном случае применительно к данному материалу, данной машине и данной степени измельчения. Она одновременно и отражает отклонение от всех ранее сделанных предположений. Величина А всегда больше теоретической т.к. энергия дополнительно тратится на деформацию тела. Теория также не учитывает различную форму кусков материала и применима лишь в случаях измельчения резаньем и истиранием и для мелкого дробления.

При измельчении материала методами раздавливания, удара и для хрупкого и среднего дробления практически оправдывается гипотеза Кирпичева-Кика (1874), базирующаяся на теории упругости, согласно которой расход энергии пропорционален разрушающему напряжению, и энергия расходуется на деформацию материала до его разрушения.

Вывод: под действием силы Р кусок материала деформируется до разрушения

σр – разность напряжения

l – начальный размер

Δl – деформация

Работа A = PΔl если P=относительное сжатие (по закону Гука)

E – модуль упругости

тогда

A=

Разнообразие физико-химических свойств твердых материалов привело к созданию ряда измельчающих машин, отличающихся принципом действия.

Принципы измельчения твердых материалов следующие:

– раздавливание,

– раскалывание,

– истирание,

– удар.

Обобщенная теория:

A = 6A’dн2(i–1) +σ

мелкое крупное

В зависимости от свойств материала применяют тот или иной метод, или сразу несколько методов.

Например:

Материал Метод
Твердый, хрупкий Твердый, вязкий Хрупкий, средней твердости Вязкий, средней твердости Раздавливание, удар Раздавливание Удар, истирание Истирание

Для крупного и среднего дробления применяются:

  1. Щековые дробилки (раздавливание)
  2. Конусные дробилки (раздавливание + истирание)

Для мелкого измельчения и тонкого помола применяются:

  1. Молотковые мельницы (удар + истирание)
  2. Шаровые (барабанные) мельницы (удар + истирание)

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: