Рассмотрим простейшие модели управления запа­сами

Схема гибели и размножения. Формула Литтла.

Задачи теории массового обслуживания. Задача для одноканальной СМО с неограниченной очередью.

Задачи теории массового обслуживания. Задача Эрланга.

Задачи теории массового обслуживания. Классификация задач.

При исследовании операций часто приходится сталкиваться с работой своеобразных систем, называемых системами массового обслуживания (СМО). Примерами таких систем могут служить: телефонные станции, ремонтные мастерские, билетные кассы, справочные бюро, магазины, парикмахерские и т. п.

Каждая СМО состоит из какого-то числа обслуживающих единиц (или «приборов»), которые мы будем называть каналами обслуживания. Каналами могут быть: линии связи, рабочие точки, кассиры, продавцы, лифты, автомашины и др. СМО могут быть одноканальными и многоканальными.

Всякая СМО предназначена для обслуживания какого-то потока заявок (или «требований»), поступающих в какие-то случайные моменты времени. Обслуживание заявки продолжается какое-то, вообще говоря, случайное время Т об, после чего канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времен обслуживания приводит к тому, что в какие-то периоды времени на входе СМО скапливается излишне большое число заявок (они либо становятся в очередь, либо покидают СМО не обслуженными); в другие же периоды СМО будет работать с недогрузкой или вообще простаивать.

Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем; состояние СМО меняется скачком в моменты появления каких-то событий (или прихода новой заявки, или окончания обслуживания, или момента, когда заявка, которой надоело ждать, покидает очередь).

Предмет теории массового обслуживания — построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, правила работы, характер потока заявок) с интересующими нас характеристиками — показателями эффективности СМО, описывающими, с той или другой точки зрения, ее способность справляться с потоком заявок. В качестве таких показателей (в зависимости от обстановки и целей исследования) могут применяться разные величины, например: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди и среднее время ожидания обслуживания; вероятность того, что число заявок в очереди превысит какое-то значение, и т. д. Среди заданных условий работы СМО мы намеренно не выделяем элементов решения: ими могут быть, например, число каналов, их производительность, режим работы СМО и т. д. Важно уметь решать прямые задачи исследования операций, а обратные ставятся и решаются в зависимости от того, какие именно параметры нам нужно выбирать или изменять. Что касается задач оптимизации, то мы ими здесь почти не будем заниматься, разве только в простейших случаях.

Математический анализ работы СМО очень облегчается, если процесс этой работы — марковский. Мы уже знаем, что для этого достаточно, чтобы все потоки событий, переводящие систему из состояния в состояние (потоки заявок, потоки «обслуживании»), были простейшими. Если это свойство нарушается, то математическое описание процесса становится гораздо сложнее и довести его до явных, аналитических формул удается лишь в редких случаях. Однако все же аппарат простейшей, марковской теории массового обслуживания может пригодиться для приближенного описания работы СМО даже в тех случаях, когда потоки событий — не простейшие. Во многих случаях для принятия разумного решения по организации работы СМО вовсе и не требуется точного знания всех ее характеристик — зачастую достаточно и приближенного, ориентировочного.

Системы массового обслуживания делятся на типы (или классы) по ряду признаков. Первое деление: СМО с отказами и СМО с очередью. В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует.,» Примеры СМО с отказами встречаются в телефонии: заявка на разговор, пришедшая в момент, когда все каналы связи заняты, получает отказ и покидает СМО не обслуженной. В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной. На практике чаще встречаются (и имеют большее значение) СМО с очередью; недаром теория массового обслуживания имеет второе название: «теория очередей».

СМО с очередью подразделяются на разные виды, в зависимости от того, как организована очередь — ограничена она или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания (так называемые «СМО с нетерпеливыми заявками»). При анализе СМО должна учитываться также и «дисциплина обслуживания» — заявки могут обслуживаться либо в порядке поступления (раньше пришла, раньше обслуживается), либо в случайном порядке. Нередко встречается так называемое обслуживание с приоритетом — некоторые заявки обслуживаются вне очереди. Приоритет может быть как абсолютным — когда заявка с более высоким приоритетом «вытесняет» из-под обслуживания заявку с низшим (например, пришедший в парикмахерскую клиент высокого ранга прогоняет с кресла обыкновенного клиента), так и относительным—когда начатое обслуживание доводится до конца, а заявка с более высоким приоритетом имеет лишь право на лучшее место в очереди.

Существуют СМО с так называемым многофазовым обслуживанием, состоящим из нескольких последовательных этапов или «фаз» (например, Покупатель, пришедший в магазин, должен сначала выбрать товар, затем оплатить его в кассе, затем получить на контроле).

Кроме этих признаков, СМО делятся на два класса:

«открытые» и «замкнутые». В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии - сама СМО (сколько каналов занято). В замкнутой СМО—зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже неисправно и ждет наладки. Это — пример замкнутой СМО. Классификация СМО далеко не ограничивается приведенными их разновидностями, но мы ограничимся ими.

Оптимизация работы СМО может производиться под разными углами зрения: с точки зрения организаторов (или владельцев) СМО или с точки зрения обслуживаемых клиентов. С первой точки зрения желательно «выжать все, что возможно» из СМО и добиться того, чтобы ее каналы были предельно загружены. С точки зрения клиентов желательно всемерное уменьшение очередей, которые зачастую становятся настоящим «бичом быта», приводя к бессмысленной трате сил и времени и, в конечном итоге, к понижению производительности труда. При решении задач оптимизации в теории массового обслуживания существенно необходим «системный подход», полное и комплексное рассмотрение всех последствий каждого решения. Например, с точки зрения клиентов СМО желательно увеличение числа каналов обслуживания; но ведь работу каждого канала надо оплачивать, что удорожает обслуживание. Построение математической модели позволяет решить оптимизационную задачу о разумном числе каналов с учетом всех «за» и «против». Поэтому мы не выделяем в задачах массового обслуживания какого-либо одного показателя эффективности, а сразу ставим эти задачи как многокритериальные.

Все перечисленные выше разновидности СМО (и многие другие, здесь не упомянутые) исследуются в теории массового обслуживания, литература по которой в настоящее время достигла огромных размеров. Мы назовем только несколько книг: [13—17]. Кроме того, разделы, посвященные теории массового обслуживания, имеются в ряде книг по исследованию операций: [1, 6, 7]. Однако почти нигде изложение не ведется на должном методическом уровне: выводы часто проводятся излишне сложно; верные (почти всегда) формулы доказываются не лучшим путем1). В настоящем (по необходимости кратком) изложении теории массового обслуживания мы приведем два методических приема, позволяющих сильно упростить выводы формул. Этим приемам будет посвящен следующий параграф.

Здесь мы рассмотрим одну из первых по времени, «классических» задач теории массового обслуживания;

эта задача возникла из практических нужд телефонии и была решена в начале нашего века датским математиком Эрлантом. Задача ставится так: имеется п каналов (линий связи), на которые поступает поток заявок с интенсивностью λ. Поток обслуживании имеет интенсивность μ (величина, обратная среднему времени обслуживания t об). Найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

А — абсолютную пропускную способность, т. е. среднее число заявок, обслуживаемых в единицу времени;

Q — относительную пропускную способность, т. е. среднюю долю пришедших заявок, обслуживаемых системой;

Р отк — вероятность отказа, т. е. того, что заявка покинет СМО не обслуженной;

k — среднее число занятых каналов.

Решение. Состояния системы S (СМО) будем нумеровать по числу заявок, находящихся в системе (в данном случае оно совпадает с числом занятых каналов):

S0 в СМО нет ни одной заявки,

S1 в СМО находится одна заявка (один канал занят, остальные свободны),

Sk в СМО находится k заявок (k каналов заняты, остальные свободны),

Sn в СМО находится п заявок (все n каналов заняты).

Граф состояний СМО соответствует схеме гибели в размножения (рис. 20.1). Разметим этот граф — проставим у стрелок интенсивности потоков событий. Из S 0 в S1 систему переводит поток заявок с интенсивностью λ (как только приходит заявка, система перескакивает из S0 в S1). Тот же поток заявок переводит

систему из любого левого состояния в соседнее правое (см. верхние стрелки на рис. 20.1).

Проставим интенсивности у нижних стрелок. Пусть система находится в состоянии S 1 (работает один канал). Он производит μ обслуживании в единицу времени. Проставляем у стрелки S 1S 0 интенсивность μ. Теперь представим себе, что система находится в состоянии S2 (работают два канала). Чтобы ей перейти в S1, нужно, чтобы либо закончил обслуживание первый канал, либо второй; суммарная интенсивность их потоков обслуживании равна 2μ; проставляем ее у соответствующей стрелки. Суммарный поток обслуживании, даваемый тремя каналами, имеет интенсивность 3μ, k каналами — kμ. Проставляем эти интенсивности у нижних стрелок на рис. 20.1.

А теперь, зная все интенсивности, воспользуемся уже готовыми формулами (19.7), (19.8) для финальных вероятностей в схеме гибели и размножения. По формуле (19.8) получим:

Члены разложения будут представлять собой коэффициенты при р0 в выражениях для p1

Заметим, что в формулы (20.1), (20.2) интенсивности λ и μ входят не по отдельности, а только в виде отношения λ/μ. Обозначим

λ/μ = ρ (20.3)

и будем называть величину р «приведенной интенсивностью потока заявок». Ее смысл—среднее число заявок, приходящее за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулы (20.1), (20.2) в виде:

(20.4)

(20.5)

Формулы (20.4), (20.5) для финальных вероятностей состояний называются формулами Эрланга — в честь основателя теории массового обслуживания. Большинство других формул этой теории (сегодня их больше, чем грибов в лесу) не носит никаких специальных имен.

Таким образом, финальные вероятности найдены. По ним мы вычислим характеристики эффективности СМО. Сначала найдем Р отк. — вероятность того, что пришедшая заявка получит отказ (не будет обслужена). Для этого нужно, чтобы все п каналов были заняты, значит,

Ротк = рn = . (20.6)

Отсюда находим относительную пропускную способность — вероятность того, что заявка будет обслужена:

Q = 1 – Pотк. = 1 - (20.7)

Абсолютную пропускную способность получим, умножая интенсивность потока заявок λ, на Q:

A = λQ = λ. (20.8)

Осталось только найти среднее число занятых каналов k. Эту величину можно было бы найти «впрямую», как математическое ожидание дискретной случайной величины с возможными значениями 0, 1,..., п и вероятностями этих значений р0 р1,..., рn:

k = 0 · р0 + 1 · p1 + 2 · р2 +... + п · рn.

Подставляя сюда выражения (20.5) для р k, (k = 0, 1,..., п) и выполняя соответствующие преобразования, мы, в конце концов, получили бы верную формулу для k. Но мы выведем ее гораздо проще (вот она, одна из «маленьких хитростей»!) В самом деле, нам известна абсолютная пропускная способность А. Это — не что иное, как интенсивность потока обслуженных системой заявок. Каждый занятый i.шал в единицу времени обслуживает в среднем |л заявок. Значит, среднее число занятых каналов равно

k = A/μ, (20.9)

или, учитывая (20.8),

k = (20.10)

Рекомендуем читателю самостоятельно решить пример. Имеется станция связи с тремя каналами (n = 3), интенсивность потока заявок λ = 1,5 (заявки в минуту); среднее время обслуживания одной заявки t об = 2 (мин.), все потоки событий (как и во всем этом параграфе) — простейшие. Найти финальные вероятности состояний и характеристики эффективности СМО: А, Q, P отк, k. На всякий случай сообщаем ответы: p 0 = 1/13, p 1 = 3/13, p 2 = 9/26, р3 = 9/26 ≈ 0,346,

А ≈ 0,981, Q ≈ 0,654, P отк ≈ 0,346, k ≈ 1,96.

Из ответов видно, между прочим, что наша СМО в значительной мере перегружена: из трех каналов занято в среднем около двух, а из поступающих заявок около 35% остаются не обслуженными. Предлагаем читателю, если он любопытен и неленив, выяснить: сколько потребуется каналов для того, чтобы удовлетворить не менее 80% поступающих заявок? И какая доля каналов при этом будет простаивать?

Тут уже проглядывает некоторый намек на оптимизацию. В самом деле, содержание каждого канала в единицу времени обходится в какую-то сумму. Вместе с тем, каждая обслуженная заявка приносит какой-то доход. Умножая этот доход на среднее число заявок А, обслуживаемых в единицу времени, мы получим средний доход от СМО в единицу времени. Естественно, при увеличении числа каналов этот доход растет, но растут и расходы, связанные с содержанием каналов. Что перевесит — увеличение доходов или расходов? Это зависит от условий операции, от «платы за обслуживание заявки» и от стоимости содержания канала. Зная эти величины, можно найти оптимальное число каналов, наиболее эффективное экономически. Мы такой задачи решать не будем, предоставляя все тому же «неленивому и любопытному читателю» придумать пример и решить. Вообще, придумывание задач больше развивает, чем решение уже поставленных кем-то.

На практике довольно часто встречаются одноканальные СМО с очередью (врач, обслуживающий пациентов; телефон-автомат с одной будкой; ЭВМ, выполняющая заказы пользователей). В теории массового обслуживания одноканальные СМО с очередью также занимают особое место (именно к таким СМО относится большинство полученных до сих пор аналитических формул для немарковских систем). Поэтому мы уделим одноканальной СМО с очередью особое внимание.

Пусть имеется одноканальная СМО с очередью, на которую не наложено никаких ограничений (ни по длине очереди, ни по времени ожидания). На эту СМО поступает поток заявок с интенсивностью λ; поток обслуживании имеет интенсивность μ, обратную среднему времени обслуживания заявки t об. Требуется найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

L сист. среднее число заявок в системе,

W сист.— среднее время пребывания заявки в системе,

L оч — среднее число заявок в очереди,

W оч среднее время пребывания заявки в очереди,

P зан вероятность того, что канал занят (степень загрузки канала).

Что касается абсолютной пропускной способности А и относительной Q, то вычислять их нет надобности:

в силу того, что очередь неограниченна, каждая заявка рано или поздно будет обслужена, поэтому А = λ, по той же причине Q = 1.

Рис. 20.2.

Решение. Состояния системы, как и раньше, будем нумеровать по числу заявок, находящихся в СМО:

S 0 канал свободен,

S 1 — канал занят (обслуживает заявку), очереди нет,

S 2 — канал занят, одна заявка стоит в очереди,

S k — канал занят, k — 1 заявок стоят в очереди,

Теоретически число состояний ничем не ограничено (бесконечно). Граф состоянии имеет вид, показанный на рис. 20.2. Это — схема гибели и размножения, но с бесконечным числом состояний. По всем стрелкам поток заявок с интенсивностью λ переводит систему слева направо, а справа налево — поток обслуживании с интенсивностью μ.

Прежде всего спросим себя, а существуют ли в этом случае финальные вероятности? Ведь число состояний системы бесконечно, и, в принципе, при t → ∞ очередь может неограниченно возрастать! Да, так оно и есть: финальные вероятности для такой СМО существуют не всегда, а только когда система не перегружена. Можно доказать, что если ρ строго меньше единицы (ρ< 1), то финальные вероятности существуют, а при ρ ≥ 1 очередь при t → ∞ растет неограниченно. Особенно «непонятным» кажется этот факт при ρ = 1. Казалось бы, к системе не предъявляется невыполнимых требований: за время обслуживания одной заявки приходит в среднем одна заявка, и все должно быть в порядке, а вот на деле — не так. При ρ = 1 СМО справляется с потоком заявок, только если поток этот — регулярен, и время обслуживания — тоже не случайное, равное интервалу между заявками. В этом «идеальном» случае очереди в СМО вообще не будет, канал будет непрерывно занят и будет регулярно выпускать обслуженные заявки. Но стоит только потоку заявок или потоку обслуживании стать хотя бы чуточку случайными — и очередь уже будет расти до бесконечности. На практике этого не происходит только потому, что «бесконечное число заявок в очереди» — абстракция. Вот к каким грубым ошибкам может привести замена случайных величин их математическими ожиданиями!

Но вернемся к нашей одноканальной СМО с неограниченной очередью. Строго говоря, формулы для финальных вероятностей в схеме гибели и размножения выводились нами только для случая конечного числа состояний, но позволим себе вольность — воспользуемся ими и для бесконечного числа состояний. Подсчитаем финальные вероятности состояний по формулам (19.8), (19.7). В нашем случае число слагаемых в формуле (19.8) будет бесконечным. Получим выражение для р0:

p 0 = [1 + λ/μ + (λ/μ)2 +... + (λ/μ)k +.. ]-1 =

= (1 + р + р2 +... + рk +….)-1. (20.11)

Ряд в формуле (20.11) представляет собой геометрическую прогрессию. Мы знаем, что при ρ < 1 ряд сходится — это бесконечно убывающая геометрическая прогрессия со знаменателем р. При р ≥ 1 ряд расходится (что является косвенным, хотя и не строгим доказательством того, что финальные вероятности состояний р0, p1,..., pk,... существуют только при р<1). Теперь предположим, что это условие выполнено, и ρ <1. Суммируя прогрессию в (20.11), имеем

1 + ρ + ρ2 +... + ρk +... = ,

откуда

p 0 = 1 - ρ. (20.12)

Вероятности р1, р2,..., рk,... найдутся по формулам:

p1 = ρ p0, p2 = ρ2 p0,…,pk = ρ p0,...,

откуда, с учетом (20.12), найдем окончательно:

p1 = ρ (1 - ρ), p2 = ρ2 (1 - ρ),..., pk = ρ k (1 - ρ),...(20.13)

Как видно, вероятности p0, p1,..., pk,... образуют геометрическую прогрессию со знаменателем р. Как это ни странно, максимальная из них р0 вероятность того, что канал будет вообще свободен. Как бы ни была нагружена система с очередью, если только она вообще справляется с потоком заявок (ρ<1), самое вероятное число заявок в системе будет 0.

Найдем среднее число заявок в СМО L сист.. Тут придется немного повозиться. Случайная величина Z — число заявок в системе — имеет возможные значения 0, 1, 2,.... k,... с вероятностями p0, р1, р2,..., pk,... Ее математическое ожидание равно

L сист = 0 · p0 + 1 · p 1 + 2 · p 2 +…+ k · p k +…= (20.14)

(сумма берется не от 0 до ∞, а от 1 до ∞, так как нулевой член равен нулю).

Подставим в формулу (20.14) выражение для pk (20.13):

L сист. =

Теперь вынесем за знак суммы ρ (1-ρ):

L сист. = ρ (1-ρ)

Тут мы опять применим «маленькую хитрость»: k ρ k -1 есть не что иное, как производная по ρ от выражения ρ k; значит,

L сист. = ρ (1-ρ)

Меняя местами операции дифференцирования п суммирования, получим:

L сист. = ρ (1-ρ) (20.15)

Но сумма в формуле (20.15) есть не что иное, как сумма бесконечно убывающей геометрической прогрессии с первым членом ρ и знаменателем ρ; эта сумма

равна , а ее производная .Подставляя это выражение в (20.15), получим:

L сист = . (20.16)

Ну, а теперь применим формулу Литтла (19.12) и найдем среднее время пребывания заявки в системе:

W сист = (20.17)

Найдем среднее число заявок в очереди L оч. Будем рассуждать так: число заявок в очереди равно числу заявок в системе минус число заявок, находящихся под обслуживанием. Значит (по правилу сложения математических ожиданий), среднее число заявок в очереди L оч равно среднему числу заявок в системе L сист минус среднее число заявок под обслуживанием. Число заявок под обслуживанием может быть либо нулем (если канал свободен), либо единицей (если он занят). Математическое ожидание такой случайной величины равно вероятности того, что канал занят (мы ее обозначили Р зан). Очевидно, Р зан равно единице минус вероятность р0 того, что канал свободен:

Р зан = 1 - р 0 = ρ. (20.18)

Следовательно, среднее число заявок под обслуживанием равно

Lоб = ρ, (20.19)

отсюда

L оч = L сист – ρ =

и окончательно

Lоч = (20.20)

По формуле Литтла (19.13) найдем среднее время пребывания заявки в очереди:

(20.21)

Таким образом, все характеристики эффективности СМО найдены.

Предложим читателю самостоятельно решить пример: одноканальная СМО представляет собой железнодорожную сортировочную станцию, на которую поступает простейший поток составов с интенсивностью λ = 2 (состава в час). Обслуживание (расформирование) состава длится случайное (показательное) время со средним значением tоб =• 20 (мин.). В парке прибытия станции имеются два пути, на которых могут ожидать обслуживания прибывающие составы; если оба пути заняты, составы вынуждены ждать на внешних путях. Требуется найти (для предельного, стационарного режима работы станции): среднее, число составов l сист, связанных со станцией, среднее время W сист пребывания состава при станции (на внутренних путях, на внешних путях и под обслуживанием), среднее число L оч составов, ожидающих очереди на расформирование (все равно, на каких путях), среднее время W оч пребывания состава на очереди. Кроме того, попытайтесь найти среднее число составов, ожидающих расформирования на внешних путях L внеш и среднее время этого ожидания W внеш (две последние величины связаны формулой Литтла). Наконец, найдите суммарный суточный штраф Ш, который придется заплатить станции за простои составов на внешних путях, если за один час простоя одного состава станция платит штраф а (руб.). На всякий случай сообщаем ответы: L сист. = 2 (состава), W сист. = 1 (час), L оч = 4/3 (состава), W оч = 2/3 (часа), L внеш = 16/27 (состава), W внеш = 8/27 ≈ 0,297 (часа). Средний суточный штраф Ш за ожидание составов на внешних путях получим, перемножая среднее число составов, прибывающих на станцию за сутки, среднее время ожидания состава на внешних путях и часовой штраф а: Ш ≈ 14,2 а.

1.Схема гибели и размножения. Мы знаем, что, имея в распоряжении размеченный граф состояний, можно легко написать уравнения Колмогорова для вероятностей состояний, а также написать и решить алгебраические уравнения для финальных вероятностей. Для некоторых случаев удается последние уравнения

Рис.19.1

решить заранее, в буквенном виде. В частности, это удается сделать, если граф состояний системы представляет собой так называемую «схему гибели и размножения».

Граф состояний для схемы гибели и размножения имеет вид, показанный на рис. 19.1. Особенность этого графа в том, что все состояния системы можно вытянуть в одну цепочку, в которой каждое из средних состояний (S 1, S 2 ,…,S n-1) связано прямой и обратной стрелкой с каждым из соседних состояний — правым и левым, а крайние состояния (S 0, S n) — только с одним соседним состоянием. Термин «схема гибели и размножения» ведет начало от биологических задач, где подобной схемой описывается изменение численности популяции.

Схема гибели и размножения очень часто встречается в разных задачах практики, в частности — в теории массового обслуживания, поэтому полезно, один раз и навсегда, найти для нее финальные вероятности состояний.

Предположим, что все потоки событии, переводящие систему по стрелкам графа,— простейшие (для краткости будем называть и систему S и протекающий в ней процесс — простейшими).

Пользуясь графом рис. 19.1, составим и решим алгебраические уравнения для финальных вероятностей состоянии), существование вытекает из того, что из каждого состояния можно перейти в каждое другое, в число состояний конечно). Для первого состояния S 0 имеем:

(19.1)

Для второго состояния S1:

В силу (19.1) последнее равенство приводится к виду

далее, совершенно аналогично

и вообще

где k принимает все значения от 0 до п. Итак, финальные вероятности p0, p1,..., рn удовлетворяют уравнениям

(19.2)

кроме того, надо учесть нормировочное условие

p 0 + p 1 + p 2 +…+ p n =1. (19.3)

Решим эту систему уравнений. Из первого уравнения (19.2)выразим p 1 через р 0:

p 1 = p 0. (19.4)

Из второго, с учетом (19.4), получим:

(19.5)

• из третьего, с учетом (19.5),

(19.6)

и вообще, для любого k (от 1 до n):

(19.7)

Обратим внимание на формулу (19.7). В числителе стоит произведение всех интенсивностей, стоящих у стрелок, ведущих слева направо (с начала и до данного состояния S k), а в знаменателе — произведение всех интенсивностей, стоящих у стрелок, ведущих справа налево (с начала и до Sk).

Таким образом, все вероятности состояний р 0, p 1 ,..., р n выражены через одну из них (р 0). Подставим эти выражения в нормировочное условие (19.3). Получим, вынося за скобку р 0:

отсюда получим выражение для р 0:

(19.8)

(скобку мы возвели в степень -1, чтобы не писать двухэтажных дробей). Все остальные вероятности выражены через р 0 (см. формулы (19.4) — (19.7)). Заметим, что коэффициенты при р 0 в каждой из них представляют собой не что иное, как последовательные члены ряда, стоящего после единицы в формуле (19.8). Значит, вычисляя р 0, мы уже нашли все эти коэффициенты.

Полученные формулы очень полезны при решении простейших задач теории массового обслуживания.

2. Формула Литтла. Теперь мы выведем одну важную формулу, связывающую (для предельного, стационарного режима) среднее число заявок L сист, находящихся в системе массового обслуживания (т. е. обслуживаемых или стоящих в очереди), и среднее время пребывания заявки в системе W сист.

Рассмотрим любую СМО (одноканальную, многоканальную, марковскую, немарковскую, с неограниченной или с ограниченной очередью) и связанные с нею два потока событий: поток заявок, прибывающих в СМО, и поток заявок, покидающих СМО. Если в системе установился предельный, стационарный режим, то среднее число заявок, прибывающих в СМО за единицу времени, равно среднему числу заявок, покидающих ее: оба потока имеют одну и ту же интенсивность λ.

Обозначим: X(t} — число заявок, прибывших в СМО до момента t. Y (t) число заявок покинувших СМО

до момента t. И та, и другая функции являются случайными и меняются скачком (увеличиваются на единицу) в моменты приходов заявок (X (t)) и уходов заявок (Y(t)). Вид функций X(t) и Y(t) показан на рис. 19.2; обе линии — ступенчатые, верхняя — X(t), нижняя— Y(t). Очевидно, что для любого момента t их разность Z (t) = X(t) — Y(t) есть не что иное, как число заявок, находящихся в СМО. Когда линии X(t) и Y(t) сливаются, в системе нет заявок.

Рассмотрим очень большой промежуток времени Т (мысленно продолжив график далеко за пределы чертежа) и вычислим для него среднее число заявок, находящихся в СМО. Оно будет равно интегралу от функции Z(t) на этом промежутке, деленному на длину интервала Т:

L сист. = . (19.9) о

Но этот интеграл представляет собой не что иное, как площадь фигуры, заштрихованной на рис. 19.2. Разглядим хорошенько этот рисунок. Фигура состоит из прямоугольников, каждый из которых имеет высоту, равную единице, и основание, равное времени пребывания в системе соответствующей заявки (первой, второй и т. д.). Обозначим эти времена t1, t2,... Правда, под конец промежутка Т некоторые прямоугольники войдут в заштрихованную фигуру не полностью, а частично, но при достаточно большом Т эти мелочи не будут играть роли. Таким образом, можно считать, что

(19.10)

где сумма распространяется на все заявки, пришедшие за время Т.

Разделим правую и левую часть (.19.10) на длину интервала Т. Получим, с учетом (19.9),

L сист. = . (19.11)

Разделим и умножим правую часть (19.11) на интенсивность X:

L сист. = .

Но величина Тλ есть не что иное, как среднее число заявок, пришедших за время Т. Если мы разделим сумму всех времен ti на среднее число заявок, то получим среднее время пребывания заявки в системе W сист. Итак,

L сист. = λ W сист.,

Откуда

W сист. = . (19.12)

Это и есть замечательная формула Литтла: для любой СМО, при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания среднее время пребывания заявки в системе равно среднему числу заявок в системе, деленному на интенсивность потока заявок.

Точно таким же образом выводится вторая формула Литтла, связывающая среднее время пребывания заявки в очереди W оч и среднее число заявок в очереди L оч:

W оч = . (19.13)

Для вывода достаточно вместо нижней линии на рис. 19.2 взять функцию U(t) — количество заявок, ушедших до момента t не из системы, а из очереди (если заявка, пришедшая в систему, не становится в очередь, а сразу идет под обслуживание, можно все же считать, что она становится в очередь, но находится в ней нулевое время).

Формулы Литтла (19.12) и (19.13) играют большую роль в теории массового обслуживания. К сожалению, в большинстве существующих руководств эти формулы (доказанные в общем виде сравнительно недавно) не приводятся1).

40. Управление запасами. Статическая модель без дефицита.

Задачи управления запасами составляют один из наиболее многочисленных классов экономических задач исследования опе­раций, решение которых имеет важное народнохозяйственное значение. Правильное и своевременное определение оптимальной стратегии управления запасами, а также нормативного уровня запасов позволяет высвободить значительные оборотные средства, замороженные в виде запасов, что в конечном счете повышает эффективность используемых ресурсов.

Рассмотрим основные характеристики моделей управления за­пасами.

Спрос. Спрос на запасаемый продукт может быть детерминиро­ванным (в простейшем случае — постоянным во времени) или случайным. Случайность спроса описывается либо случайным мо­ментом спроса, либо случайным объемом спроса в детерминиро­ванные или случайные моменты времени.

Пополнение склада. Пополнение склада может осуществляться либо периодически через определенные интервалы времени, либо по мере исчерпания запасов, т. е. снижения их до некоторого уровня.

Объем заказа. При периодическом пополнении и случайном исчерпании запасов объем заказа может зависеть от того состоя­ния, которое наблюдается в момент подачи заказа. Заказ обычно подается на одну и ту же величину при достижении запасом за­данного уровня — так называемой точки заказа.

Время доставка. В идеализированных моделях управления запасами предполагается, что заказанное пополнение доставля­ется на склад мгновенно. В других моделях рассматривается за-

держка поставок на фиксированный или случайный интервал времени.

Стоимость поставки. Как правило, предполагается, что стои­мость каждой поставки слагается из двух компонент — разовых затрат, не зависящих от объема заказываемой партии, и затрат, зависящих (чаще всего — линейно) от объема партии.

Издержки хранения. В большинстве моделей управления запа­сами считают объем склада практически неограниченным, а в качестве контролирующей величины служит объем хранимых за­пасов. При этом полагают, что за хранение каждой единицы запа­са в единицу времени взимается определенная плата.

Штраф за дефицит. Любой склад создается для того, чтобы предотвратить дефицит определенного типа изделий в обслужи­ваемой системе. Отсутствие запаса в нужный момент приводит к убыткам, связанным с простоем оборудования, неритмичностью производства и т. п. Эти убытки в дальнейшем будем называть штрафом за дефицит.

Номенклатура запаса. В простейших случаях предполагается, что на складе хранится запас однотипных изделий или однород­ного продукта. В более сложных случаях рассматривается много-менклатурный запас.

Структура складской системы. Наиболее полно разработаны математические модели одиночного склада. Однако на практике встречаются и более сложные структуры: иерархические системы складов с различными периодами пополнения и временем дос­тавки заказов, с возможностью обмена запасами между складами одного уровня иерархии и т. п.

В качестве критерия эффективности принятой стратегии управления запасами выступает функция затрат (издержек), пред­ставляющая суммарные затраты на хранение и поставку запасае­мого продукта (в том числе потери от порчи продукта при хране­нии и его морального старения, потери прибыли от омертвления капитала и т. п.) и затраты на штрафы.

Управление запасами состоит в отыскании такой стратегии по­полнения и расхода запасами, при котором функция затрат прини­мает минимальное значение.

Пусть функции A(t), B(t) и R(t) выражают соответственно по­полнение запасов, их расход и спрос на запасаемый продукт за промежуток времени [0, t]. В моделях управления запасами обыч­но используются производные этих функций по времени a(t), b(t), r(t), называемые ответственно интенсивностями пополнения, рас­хода и спроса.

Если функции а(t), b(t), r(t) не случайные величины, то мо­дель управления запасами считается детерминированной, если хотя бы одна из них носит случайный характер — стохастической. Ес­ли все параметры модели не меняются во времени, она называет­ся статической, в противном случае — динамической. Статические модели используются, когда принимается разовое решение об уровне запасов на определенный период, а динамические — в случае принятия последовательных решений об уровнях запаса или корректировке ранее принятых решении с учетом происхо­дящих изменений.

Уровень запаса в момент t определяется основным уравнением запасов

, (1)

где — начальный запас в момент t= 0.

Уравнение (1) чаще используется в интегральной форме:

(2)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: