Билет 48.Теплоемкость кристаллов

Билет 47. Первый лазер (1960)

Характерная особенность вынужденного излучения состоит в том, что

испускаемый свет не отличим от вынуждающего света, т.е. совпадает с ним по всем признакам:по частоте, фазе, поляризации и направлению распространения.

Это означает, что вынужденное излучение добавляет в световой пучок точно такие же кванты, какие уводит из него резонансное поглощение. Поэтому на опыте проявляется только разность поглощения и вынужденного излучения.

Поглощают свет атомы, находящиеся на нижнем из двух участвующих в игре уровней, излучают же атомы, находящиеся на верхнем уровне. Ввиду этого, если среда содержит на нижнем уровне больше атомов, чем на верхнем, то преобладает поглощение н световой пучок ослабляется средой.

Напротив, если больше населен верхний уровень, то преобладает вынужденное излучение и среда усиливает проходящий свет. В последние годы это явление получило применение в очень перспективных приборах — квантовых усилителях и генераторах света.

1960 год: Теодор Мейман продемонстрировал работу первого оптического квантового генератора — лазера[7]. В качестве активной среды использовался рубин (оксид алюминия Al2O3 с небольшой примесью хрома Cr), а вместо объёмного резонатора был использован открытый оптический резонатор. Этот лазер работал в импульсном режиме на длине волны в 694,3 нм[3]. В декабре того же года был создан гелий-неоновый лазер, излучающий в непрерывном режиме (А. Джаван, У. Беннет, Д. Хэрриот). Изначально лазер работал в инфракрасном диапазоне, затем был модифицирован для излучения видимого красного света[6].


Модель Эйнштейна. В модели Эйнштейна считают, что атомы колеблются независимо друг от друга и что частоты колебаний всех атомов одинаковы. В таком случае для подсчета внутренней энергии кристалла, содержащего атомов, достаточно рассмотреть один осциллятор, а затем домножить результат на - число осцилляторов. Пусть каждый осциллятор имеет частоту . Средняя энергия, запасенная в таком осцилляторе, вычисляется с использованием распределения Бозе-Эйнштейна:

где - среднее число квантов энергии, "запасенных" в осцилляторе.

Энергия кристалла, содержащего атомов, тогда вычисляется как , а теплоемкость при постоянном объеме - дифференцированием энергии по температуре:

Модель дает хорошее совпадение с экспериментом для температур выше 50-100 К (не слишком близких к абсолютному нулю). График зависимости приведен на рис. 3.10.

При (случай высоких температур), что соответствует известному закону Дюлонга и Пти. При (случай низких температур) при , как этого требует третье начало термодинамики. Однако, убывание оказывается более быстрым, чем наблюдают экспериментально . Это связано с некорректностью допущений о независимости колебаний отдельных атомов. Известно, что атомы взаимодействуют друг с другом, например (раздел 3.2), в кристалле существуют упругие волны с разной длиной волны, соответствующие коллективным, зависящим друг от друга, колебаниям атомов


Билет 49. Закон Дюлонга – Пти

Закон Дюлонга-Пти - закон, согласно которому произведение удельной теплоемкости и относительной атомной массы для всех простых твердых тел приблизительно равно 25 (при условии, что удельная теплоемкость выражена в Дж. моль-1К-1).

Закон Дюлонга и Пти соблюдается для твердых одноатомных тел при достаточно высоких температурах. Для большинства тел такой достаточно высокой температурой является уже комнатная температура. Однако для некоторых тел с малой атомной массой, например для бериллия, бора, углерода (алмаза), комнатная температура недостаточно высока, и они подчиняются закону Дюлонга и Пти лишь при более высокой температуре. Наоборот, при охлаждении все тела обнаруживают отступления от закона Дюлонга и Пти. При охлаждении теплоемкость всех тел уменьшается.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: