Дислокации. К линейным дефектам кристаллической решетки относятся дислокации

К линейным дефектам кристаллической решетки относятся дислокации. Простейшими видами дислокаций являются краевая и винтовая дислокации. Об их характере можно судить по рисунку 5.5.

 
 

На рисунке 5.5, а изображено строение идеального кристалла в виде семейства параллельных друг другу атомных плоскостей. Если одна из этих плоскостей обрывается внутри кристалла (рисунок 5.5, б), то место обрыва ее образует краевую дислокацию. В случае винтовой дислокации (рисунок 5.5, в) характер смещения атомных плоскостей иной.

Здесь нет обрыва внутри кристалла какой-нибудь из атомных плоскостей, но сами атомные плоскости представляют собой систему, подобную винтовой лестнице.

По существу, это одна атомная плоскость, закрученная по винтовой линии. Если обходить по этой плоскости вокруг оси винтовой дислокации, то с каждым оборотом будем подниматься или опускаться на один шаг винта, равный межплоскостному расстоянию.

Любая конкретная дислокация может быть представлена как сочетание краевой и винтовой дислокаций.

Дислокации, являясь протяженными дефектами кристалла, охватывают своим упругим полем искаженной решетки гораздо большее число узлов, чем атомные дефекты. Ширина дислокации составляет всего несколько периодов решетки, а ее длина достигает многих тысяч периодов. Энергия дислокаций оценивается величиной порядка 4×10-19 Джна 1 мдлины дислокации. Энергия дислокаций, рассчитанная на одно межатомное расстояние вдоль длины дислокации, для разных кристаллов лежит в пределах от 3 до 30 Эв. Такая большая энергия, необходимая для создания дислокаций, является причиной того, что число их практически не зависит от температуры. В отличие от вакансий, вероятность возникновения дислокаций за счет флуктуации теплового движения пренебрежимо мала для всего интервала температур, в котором возможно кристаллическое состояние.

В недеформированных металлических кристаллах через площадку в 1 см2проходит 106–108 дислокаций, при пластической деформации плотность дислокаций возрастает в тысячи, а иногда и в миллионы раз.

Важнейшим свойством дислокаций является их легкая подвижность и активное взаимодействие между собой и с любыми другими дефектами решетки. Для того, чтобы вызвать движение дислокации, достаточно создать в кристалле напряжение сдвига порядка 10 Н/мм2.Уже под влиянием такого небольшого напряжения дислокация будет перемещаться в кристалле, пока не встретит какого-либо препятствия, которым может быть граница зерна, другая дислокация, атом внедрения и т. д. При встрече с препятствием дислокация искривляется, огибает препятствие, образуя расширяющуюся дислокационную петлю, которая затем отшнуровывается и образует отдельную дислокационную петлю. Причем в области обособленной расширяющейся петли остается отрезок линейной дислокации (между двумя препятствиями), который под воздействием внешнего напряжения снова будет изгибаться, и весь процесс повторится снова. Таким образом, при взаимодействии движущихся дислокаций с препятствиями происходит рост числа дислокаций.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: