Рис. 6.9
Способы обработки резанием
Кроме указанных, применяются и ряд более редких схем обработки металлов резанием: строгание, долбление, протягивание, шевингование и т.д.
Контрольные вопросы:
1.Почему при сверлении трудно обеспечить низкую шероховатость обработанной поверхности?
2.Почему спиральным сверлом невозможно обрабатывать "глубокие" отверстия?
3. Какими методами обработки резанием, кроме фрезерования, можно получить плоскую поверхность?
4.С какой целью производится развертывание отверстий?
5.На каких металлорежущих станках невозможно обрабатывать отверстия?
Образец карты тестового контроля:
1. Какие поверхности по форме возможно получить токарным методом: а). плоские и цилиндрические; б). поверхности вращения и винтовые поверхности; в). любые поверхности
2. Какой метод обработки отверстий позволяет получать более точные поверхности: а). сверление; б). развертывание; в). зенкерование;
3. Почему обработка более точной поверхности резанием дороже: а). из-за необходимости снижения скорости резания; б). из-за применения более дорогого станка и инструмента; в). из-за обработки поверхности за несколько проходов;
4. Почему получение резанием поверхности с малой шероховатостью дороже,
чем с большой:
а). из-за необходимости уменьшения подачи; б). из-за применения более дорогого станка и инструмента; в). из-за обработки поверхности за несколько проходов;
5. Какими фрезами обрабатывают сложные по форме поверхности:
а). фасонными и концевыми;
б). цилиндрическими и концевыми;
в). фасонными и грибковыми;
Осуществляется воздействием на заготовку множеством неориентированных лезвий.
При этом, в зависимости от ориентации зерна и его остроты может происходить резание, царапание или трение зерна и обрабатываемого материала (рис.8.1):
Рис.7.1
Характер протекающего явления при воздействии одного лезвия (абразивного зерна) зависит от переднего угла и радиуса округления лезвия (R). При воздействии множеством абразивных зерен съем материала будет определяться процессами микрорезания, осуществляемыми благоприятно ориентированными зернами.
В качестве абразивного материала применяют мелкие (до 2мм) кристаллы сверхтвердых веществ. Наиболее широко используются: электрокорунд (Al2O3), карбид кремния (SiC), карбид бора (B4C), искусственные алмазы, кубический нитрид бора (эльбор,BN).
Из кристаллов абразивного материала с помощью связки получают шлифовальный инструмент требуемой формы (круги, бруски и т.д.) (рис.7.2).
Для объединения кристаллов в прочный инструмент применяются керамические, металлические, органические связки, имеющие свои конкретные преимущества в определенных условиях применения.
Так, керамические связки обеспечивают высокую прочность инструмента, но хрупки и не выдерживают ударных и вибрационных нагрузок. Органические связки могут быть прочными и элластичными, но не обладают достаточной термостойкостью (менее 200°С), поэтому разрушаются при нагреве инструмента.
Важнейшей характеристикой связки является прочность удержания ею зерен абразивного материала. Эта характеристика, называемая твердостью круга, во многом определяет его работоспособность в конкретных условиях обработки. Дело в том, что работают только зерна, находящиеся на поверхности круга, и при любых условиях они в конце концов затупляются. При этом они перестают резать, а только нагревают поверхность заготовки. Поэтому прочность связки должна быть выбрана так, чтобы при затуплении зерна и возрастании действующих на него нагрузок оно отделилось (вылетело) от инструмента. По мере удаления затупленных зубьев обнажаются зерна, находившиеся в глубине и обладающие острыми кромками.
Такой процесс называется самозатачиванием абразивного инструмента и его нормальное протекание определяется правильным выбором характеристики связки (твердости круга).
Виды абразивного инструмента
Рис.7.2
Различные формы инструмента и кинематика его движения относительно заготовки позволяют получать различные формы поверхностей (рис.7.3…7.6).
Рис.7.3 |
Рис. 7.4
Рис.7.5
Рис.7.6 А – схема профильного шлифования, Б – плоское шлифование торцем круга, В – ленточное шлифование, Г – шлифование резьбы, Д – внутреннее планетарное шлифование
Для реализации различных схем шлифования существует широкий типаж
шлифовальных станков, определяемых обычно по виду получаемых
поверхностей (плоскошлифовальные, круглошлифовальные,
внутришлифовальные, зубошлифовальные, заточные и др. шлифовальные станки). Характерной особенностью процессов шлифования является высокая скорость главного движения Dг (обычно 30-80м/с, иногда до 300м/с). Глубина же резания и подача обычно не велики и действующие на заготовку и инструмент силы незначительны. Поэтому шлифованием можно получить наиболее высокую точность обработки при минимальной шероховатости поверхности (до 3-4 квалитета точности, Ra до 0,1мкм).
Высокие скорости резания могут приводить к существенному нагреву поверхностных слоев заготовки, что может отразиться на качестве получаемого изделия. Поэтому при шлифовании обычно применяют смазочно-охлаждающие жидкости (СОЖ). Применение жидкостного охлаждения при шлифовании существенно снижает запыленность рабочей зоны разрушенными частицами абразива и связки, которые вредно действуют на здоровье обслуживающего персонала и могут приводить к возникновению профессиональных заболеваний (силикоз).
Характерной особенностью шлифования является зависимость достигаемой
точности и шероховатости от параметров инструмента. Так
величина зерна (характеристика - зернистость) определяет производительность
процесса и шероховатость. Чем крупнее зерна абразива в круге, тем больше
производительность удаления материала заготовки, но выше шероховатость.
Поэтому часто шлифование проводят в два этапа: на первом удаляют
основной припуск и увеличивают точность, а на втором, другим
(мелкозернистым) инструментом достигают заданной точности и
шероховатости.
Шлифованием можно обрабатывать сколь угодно твердые материалы, естественно, что абразивный материал должен применяться более твердый, чем обрабатываемый. Шлифованием обрабатывают точные поверхности деталей машин, выполненные из различных материалов, стеклянные изделия (линзы, хрусталь), кристаллы (например, драгоценные камни: алмаз, рубин, изумруд) и т.д. Во многих случаях шлифование является единственным методом достижения заданной точности и шероховатости (например, в оптике, микроэлектронике).